精英家教网 > 高中数学 > 题目详情
3.某几何体的三视图如图所示,则其表面积为(  )
A.B.C.D.12π

分析 由三视图可知该几何体上半部分为半球,下面是一个圆柱,根据所给数据,即可求出表面积.

解答 解:由三视图可知该几何体上半部分为半球,下面是一个圆柱,所以其表面积为$\frac{1}{2}×4π×{1^2}+π×2×2+π×1×1=7π$.
故选B.

点评 本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知集合A={a1,a2,…,an},ai∈R,i=1,2,…,n,并且n≥2. 定义$T(A)=\sum_{1≤i<j≤n}{|{a_j}-{a_i}}|$(例如:$\sum_{1≤i<j≤3}{|{a_j}-{a_i}|}=|{a_2}-{a_1}|+|{a_3}-{a_1}|+|{a_3}-{a_2}|$).
(Ⅰ)若A={1,2,3,4,5,6,7,8,9,10},M={1,2,3,4,5},集合A的子集N满足:N≠M,且T(M)=T(N),求出一个符合条件的N;
(Ⅱ)对于任意给定的常数C以及给定的集合A={a1,a2,…,an},求证:存在集合B={b1,b2,…,bn},使得T(B)=T(A),且$\sum_{i=1}^n{b_i}=C$.
(Ⅲ)已知集合A={a1,a2,…,a2m}满足:ai<ai+1,i=1,2,…,2m-1,m≥2,a1=a,a2m=b,其中a,b∈R为给定的常数,求T(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知两点$A(-\sqrt{2},0),B(\sqrt{2},0)$,动点P在y轴上的投影是Q,且$2\overrightarrow{PA}•\overrightarrow{PB}=|\overrightarrow{PQ}{|^2}$.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)过F(1,0)作互相垂直的两条直线交轨迹C于点G,H,M,N,且E1,E2分别是GH,MN的中点.求证:直线E1E2恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.(3a+2b)6的展开式中的第3项的二项式系数为15.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.直线$\left\{\begin{array}{l}{x=t-1}\\{y=2-t}\end{array}\right.$(t为参数)与曲线$\left\{\begin{array}{l}{x=3cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数)的交点个数是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若(1+2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a0+a2+a4=121.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}中,a1=-1,an+1=2an+3n-1(n∈N*),则其前n项和Sn=2n+2-4-$\frac{3{n}^{2}+7n}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知在平面直角坐标系中,曲线C1的参数方程是$\left\{\begin{array}{l}x=-1+cosθ\\ y=sinθ\end{array}\right.$(θ为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程是ρ=2sinθ.
(Ⅰ) 求曲线C1与C2交点的平面直角坐标;
(Ⅱ) 点A,B分别在曲线C1,C2上,当|AB|最大时,求△OAB的面积(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.数列{an}中,已知a1=1,a2=a,an+1=k(an+an+2)对任意n∈N*都成立,数列{an}的前n项和为Sn.(这里a,k均为实数)
(1)若{an}是等差数列,求Sn
(2)若a=1,k=-$\frac{1}{2}$,求Sn
(3)是否存在实数k,使数列{an}是公比不为1的等比数列,且任意相邻三项am,am+1,am+2按某顺序排列后成等差数列?若存在,求出所有k的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案