精英家教网 > 高中数学 > 题目详情
16.已知n∈N*,证明:1+$\frac{1}{2}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n-1}}$<2.

分析 直接利用等比数列的求和公式证得答案.

解答 证明:1+$\frac{1}{2}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n-1}}$=$\frac{1×(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}=2(1-\frac{1}{{2}^{n}})$=$2-\frac{1}{{2}^{n-1}}<2$.

点评 本题考查了等比数列的前n项和公式,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=loga$\frac{(2x+4)^{2}}{x}$,当x∈[1,4]时,f(x)≥2恒成立,则a的取值范围是1<a≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=-$\frac{π}{2x}$,g(x)=xcosx-sinx,当x∈[-3π,3π]时,方程f(x)=g(x)根的个数是(  )
A.8B.6C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.三名男歌唱家和两名女歌唱家联合举行一场音乐会.若两名女歌唱家之间恰有一名男歌唱家,则有多少种不同的出场方案?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.计算:$\frac{1-2si{n}^{2}α}{2co{s}^{2}α-1}$=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=$\frac{(x+2)^{2}-4}{{x}^{2}+4x+4}$的单调区间是减区间(-∞,-2),增区间(-2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知抛物线y2=2px(p>0)的焦点恰为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F2,双曲线C的左焦点为F1,若以F2为圆心的圆过点F1及双曲线C与该抛物线的交点,则双曲线C的离心率为(  )
A.$\sqrt{2}$B.1+$\sqrt{2}$C.1+$\sqrt{3}$D.2+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等比数列{an}的前n项和为Sn,且Sn=($\frac{{a}_{n}+1}{2}$)2,若数列{bn}满足bn=nSn,求{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知动点P到点F(1,0)的距离比到直线l:x+2=0距离小1.设动点P的轨迹为C,
(Ⅰ)求轨迹C的方程;
(Ⅱ)已知定点M(4,0).斜率为k的直线交轨迹C于A、B两点,使△ABM成为以AB为底边的等腰三角形,
①求斜率k的取值范围;
②求弦长|AB|的最大值.

查看答案和解析>>

同步练习册答案