精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=-$\frac{π}{2x}$,g(x)=xcosx-sinx,当x∈[-3π,3π]时,方程f(x)=g(x)根的个数是(  )
A.8B.6C.4D.2

分析 先对两个函数分析可知,函数f(x)与g(x)都是奇函数,且f(x)是反比例函数,g(x)在[0,π]上是减函数,在[π,2π]上是增函数,在[2π,3π]上是减函数,且g(0)=0,g(π)=-π;g(2π)=2π;g(3π)=-3π;从而作出函数的图象,由图象求方程的根的个数即可.

解答 解:由题意知,
函数f(x)=-$\frac{π}{2x}$在[-3π,3π]是奇函数且是反比例函数,
g(x)=xcosx-sinx在[-3π,3π]是奇函数;
g′(x)=cosx-xsinx-cosx=-xsinx;
故g(x)在[0,π]上是减函数,在[π,2π]上是增函数,在[2π,3π]上是减函数,
且g(0)=0,g(π)=-π;g(2π)=2π;g(3π)=-3π;
故作函数f(x)与g(x)在[-3π,3π]上的图象如下,

结合图象可知,有6个交点;
故选:B.

点评 本题考查了导数的综合应用及函数的图象的性质应用,同时考查了函数的零点与方程的根的关系应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0),右焦点为F,过F作一条渐近线的垂线,垂足为M,O为坐标原点,若△OMF面积为$\frac{\sqrt{3}}{8}{c}^{2}$(其中c为半焦距),则该双曲线离心率可能为(  )
A.$\sqrt{3}$B.$\frac{2\sqrt{3}}{3}$C.3D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)=$\left\{\begin{array}{l}{{2}^{x}(x≤0)}\\{|lo{g}_{2}x|(x>0)}\end{array}\right.$,则方程f[f(x)]=2的根的个数是(  )
A.3个B.4个C.5个D.6个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设梯形ABCD的顶点坐标为A(-1,2)、B(3,4)、D(2,1),且AB∥DC,AB=2CD,求点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知点A(1,-1),B(3,0),C(2,1).若平面区域D由所有满足$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ax2+bx+1(a,b为实数,a≠0.x∈R).
(1)若f(-1)=0,且函数f(x)的值域为[0,+∞),求f(x);
(2)设F(x)=$\left\{\begin{array}{l}{f(x),x>0}\\{-f(x),x<0}\end{array}\right.$,mn<0,m+n>0,a>0,且函数f(x)为偶函数,证明:F(m)+F(n)>0;
(3)设g(x)=$\frac{lnx+1}{{e}^{x}}$,g(x)的导函数是g′(x),当a=b=1时,证明:对任意实数x>0,[f(x)-1]g′(x)<1+e-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若直线$\frac{x}{a}$+$\frac{y}{c}$=1与直线$\frac{x}{b}$+$\frac{y}{d}$=1相交于点E,O为原点,则直线OE的方程是$(\frac{1}{a}-\frac{1}{b})x+(\frac{1}{c}-\frac{1}{d})$y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知n∈N*,证明:1+$\frac{1}{2}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n-1}}$<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.高二年级某三个班级参加“黄冈中学第一届数学竞赛”分别有1,2,3名同学获奖.并站成一排合影留念,若相同班级的同学不能相邻,则不同的排法种数为120.

查看答案和解析>>

同步练习册答案