精英家教网 > 高中数学 > 题目详情
17.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0),右焦点为F,过F作一条渐近线的垂线,垂足为M,O为坐标原点,若△OMF面积为$\frac{\sqrt{3}}{8}{c}^{2}$(其中c为半焦距),则该双曲线离心率可能为(  )
A.$\sqrt{3}$B.$\frac{2\sqrt{3}}{3}$C.3D.2$\sqrt{3}$

分析 设过F(c,0)与一条渐近线bx-ay=0垂直的直线为l,则l的方程为y=-$\frac{a}{b}$(x-c),与bx-ay=0联立可得M($\frac{{a}^{2}}{c}$,$\frac{ab}{c}$),利用△OMF面积为$\frac{\sqrt{3}}{8}{c}^{2}$(其中c为半焦距),可得ab=$\frac{\sqrt{3}}{4}$c2,即可求出双曲线离心率.

解答 解:设过F(c,0)与一条渐近线bx-ay=0垂直的直线为l,则l的方程为y=-$\frac{a}{b}$(x-c)
与bx-ay=0联立可得M($\frac{{a}^{2}}{c}$,$\frac{ab}{c}$)
因为△OMF面积为$\frac{\sqrt{3}}{8}{c}^{2}$(其中c为半焦距),
所以$\frac{1}{2}×c×\frac{ab}{c}$=$\frac{\sqrt{3}}{8}{c}^{2}$,
所以ab=$\frac{\sqrt{3}}{4}$c2
所以3e4-16e2+16=0,
所以e=2或$\frac{2\sqrt{3}}{3}$,
故选:B.

点评 本题考查双曲线离心率,考查三角形面积的计算,考查学生的计算能力,确定M的坐标是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,PD=4,DC=DB=3,PB=PC=5,AD⊥DB,
(1)求证:AD⊥PB;
(2)若tan∠BDC=$\frac{3}{4}$,且PA与平面PCD所成角的正弦值为$\frac{12\sqrt{13}}{65}$,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和Sn满足:Sn=$\frac{a}{a-1}({{a_n}-1})$,a为常数,且a≠0,a≠1.
(1)求数列{an}的通项公式;
(2)若a=$\frac{1}{3}$,设bn=$\frac{a_n}{{1+{a_n}}}-\frac{{{a_{n+1}}}}{{1-{a_{n+1}}}}$,且数列{bn}的前n项和为Tn,求证:Tn<$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一位大学生在暑期社会实践活动中,为了解农村家庭年储蓄y与年收入x的关系,抽取了20个家庭进行调查,根据获得的数据计算得$\sum_{i=1}^{20}{x_i}=100,\sum_{i=1}^{20}{y_i}=40$,并得到家庭年储蓄y对年收入x的线性回归方程为y=bx-1.5,则b=0.7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在锐角△ABC中,若A=2B,则$\frac{a}{b}$的范围是(  )
A.($\sqrt{2}$,$\sqrt{3}$)B.($\sqrt{3}$,2)C.(0,2)D.($\sqrt{2}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,△ABC是圆O的内接三角形,PA是圆O的切线,A为切点,PB交AC于点E,交圆O于点D,若PE=PA,∠ABC=60°,且PD=2,BD=6,则AC=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合,已知AD•AB=AE•AC
(1)求证:B,C,D,E四点共圆
(2)若三角形ABC是边长为3的正三角形,且AD=1,求B,C,D,E四点所在的圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=loga$\frac{(2x+4)^{2}}{x}$,当x∈[1,4]时,f(x)≥2恒成立,则a的取值范围是1<a≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=-$\frac{π}{2x}$,g(x)=xcosx-sinx,当x∈[-3π,3π]时,方程f(x)=g(x)根的个数是(  )
A.8B.6C.4D.2

查看答案和解析>>

同步练习册答案