精英家教网 > 高中数学 > 题目详情
16.已知θ∈($\frac{π}{2}$,π),且cos(θ-$\frac{π}{4}$)=$\frac{3}{5}$,则tan(θ+$\frac{π}{4}$)=-$\frac{3}{4}$.

分析 由条件利用同角三角函数的基本关系求得sin(θ-$\frac{π}{4}$),可得 tan(θ-$\frac{π}{4}$)的值,利用两角差的正切公式求得tanθ,利用两角和的正切公式求得tan(θ+$\frac{π}{4}$)的值.

解答 解:∵θ∈($\frac{π}{2}$,π),且cos(θ-$\frac{π}{4}$)=$\frac{3}{5}$,
∴θ-$\frac{π}{4}$为锐角,
∴sin(θ-$\frac{π}{4}$)=$\sqrt{{1-cos}^{2}(θ-\frac{π}{4})}$=$\frac{4}{5}$,
∴tan(θ-$\frac{π}{4}$)=$\frac{sin(θ-\frac{π}{4})}{cos(θ-\frac{π}{4})}$=$\frac{tanθ-1}{1+tanθ}$=$\frac{4}{3}$,
∴tanθ=-7,
则tan(θ+$\frac{π}{4}$)=$\frac{tanθ+1}{1-tanθ}$=$\frac{-6}{8}$=-$\frac{3}{4}$,
故答案为:-$\frac{3}{4}$.

点评 本题主要考查同角三角函数的基本关系,两角和差的正切公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知等比数列{an}的公比为正数,且a4•a8=2a52,a2=1,则a1=(  )
A.$\frac{1}{2}$B.2C.$\sqrt{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设f(x)为奇函数,且f(x)在(-∞,0)内是增函数,f(-2)=0,则xf(x)>0的解集为(-∞,-2)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设等差数列{an}的前n项和为Sn,若$\frac{a_5}{a_3}$=$\frac{5}{3}$,则$\frac{S_5}{S_3}$=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),离心率为$\frac{{\sqrt{2}}}{2}$,左准线方程是x=-2,设O为原点,点A在椭圆C上,点B在直线y=2上,且OA⊥OB.
(1)求椭圆C的方程;
(2)求△AOB面积取得最小值时,线段AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直线l经过点P(-4,2),且被圆(x+1)2+(y+2)2=25截得的弦长为8,则直线l的方程是(  )
A.7x+24y-20=0B.4x+3y+25=0
C.4x+3y+25=0或x=-4D.7x+24y-20=0或x=-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知甲、乙两组数据如茎叶图所示,若它们的中位数相同,平均数也相同,
(1)求m,n的取值.
(2)比较甲、乙两组数据的稳定性,并说明理由.
注:方差公式s2=$\frac{({x}_{1}-\overline{x})^{2}+({x}_{2}-\overline{x})^{2}+…+({x}_{n}+\overline{x})^{2}}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{ax+1}{|x|+1}$,x∈R,a∈R.
(1)a=1时,求证:f(x)在区间(-∞,0)上为单调增函数;
(2)当方程f(x)=3有解时,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某校高二年级共1000名学生,为了调查该年级学生视力情况,若用系统抽样的方法抽取50个样本,现将所有学生随机地编号为000,001,002,…,999,若抽样时确定每组都是抽出第2个数,则第6组抽出的学生的编号101.

查看答案和解析>>

同步练习册答案