【题目】如图,四棱锥的底面ABCD是正方形,为等边三角形,M,N分别是AB,AD的中点,且平面平面ABCD.
证明:平面PNB;
设点E是棱PA上一点,若平面DEM,求.
【答案】(1)见解析;(2)2
【解析】
(1)推导出BM=AN,CM⊥BN,PN⊥AD,从而PN⊥平面ABCD,进而CM⊥PN,由此能证明CM⊥平面PNB;
(2)连结AC,交DM于点Q,连结EQ,推导出PC∥EQ,从而PE:EA=CQ:QA,由此能求出的值.
证明:(1)在正方形ABCD中,M,N分别是AB,AD的中点,
∴BM=AN,BC=AB,∠MBC=∠NAB=90°,
∴△MBC≌△NAB,∴∠BCM=∠NAB,
又∠NBA+∠BMC=90°,∴∠NBA+∠BMC=90°,
∴CM⊥BN,
∵△PAD为等边三角形,N是AD的中点,
∴PN⊥AD,
又平面PAD⊥平面ABCD,PN平面PAD,平面PAD∩平面ABCD=AD,
∴PN⊥平面ABCD,
又CM平面ABCD,∴CM⊥PN,
∵BN,PN平面PNB,BN∩PN=N,
∴CM⊥平面PNB.
解:(2)连结AC,交DM于点Q,连结EQ,
∵PC∥平面DEM,PC平面PAC,平面PAC∩平面DEM=EQ,
∴PC∥EQ,
∴PE:EA=CQ:QA,
在正方形ABCD中,AM∥CD,且CD=2AM,
∴CQ:QA=CD:AM=2,
∴2.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,且f(α)=1,α∈(0, ),则cos(2α+ )=( )
A.
B.
C.﹣
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为常数, ,函数,且方程有等
根.
(1)求的解析式及值域;
(2)设集合,,若,求实数的取值范围;
(3)是否存在实数,使的定义域和值域分别为和?若存在,求
出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆经过点, ,且圆心在直线上.
(1)求圆的方程;
(2)过点的直线与圆交于两点,问在直线上是否存在定点,使得恒成立?若存在,请求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=lnx,g(x)=(2﹣a)(x﹣1)﹣2f(x). (Ⅰ)当a=1时,求函数g(x)的单调区间;
(Ⅱ)设F(x)=|f(x)|+ (b>0).对任意x1 , x2∈(0,2],x1≠x2 , 都有 <﹣1,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xoy中,曲线C1: (t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:ρ=2 cosθ. (Ⅰ)求C2与C3交点的直角坐标;
(Ⅱ)若C2与C1相交于点A,C3与C1相交于点B,求|AB|的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设Sn是数列{an}的前n项和,已知a1=3,an+1=2Sn+3(n∈N) (I)求数列{an}的通项公式;
(Ⅱ)令bn=(2n﹣1)an , 求数列{bn}的前n项和Tn .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com