| A. | 16π | B. | 12π | C. | 8π | D. | 4π |
分析 根据棱柱的体积公式求得棱柱的侧棱长,再利用三棱柱的底面是直角三角形可得外接球的球心为上、下底面直角三角形斜边中点连线的中点O,从而求得外接球的半径R,代入球的表面积公式计算.
解答 解:∵∠ACB=90°,∠BAC=30°,BC=1,∴$AC=\sqrt{3}$.
∵AA1⊥底面ABC,
∴三棱柱ABC-A1B1C1的体积$V=\frac{1}{2}×1×\sqrt{3}•C{C_1}=3$,得$C{C_1}=2\sqrt{3}$,
∴三棱柱ABC-A1B1C1的外接球半径$r=\frac{1}{2}\sqrt{1+{{(\sqrt{3})}^2}+{{(2\sqrt{3})}^2}}=2$,
∴${S_表}=4π×{2^2}=16π$.
故选:A.
点评 本题考查了求三棱柱的外接球的表面积,利用三棱柱的结构特征求得外接球的半径是关键.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2015}{2}$ | B. | 2015 | C. | 2016 | D. | 2013 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 1 | C. | $-\sqrt{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com