£¨1£©£¨Ñ¡ÐÞ4-2 ¾ØÕóÓë±ä»»£©ÒÑÖª¾ØÕóA=
12
-14
£¬ÏòÁ¿
¦Á
=
7
4
£®
¢ÙÇó¾ØÕóAµÄÌØÕ÷Öµ¦Ë1¡¢¦Ë2ºÍÌØÕ÷ÏòÁ¿
¦Á1
¡¢
¦Á2
£»
¢ÚÇóA5
¦Á
µÄÖµ£®
£¨2£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³ÌÇó¼«×ø±êϵÖУ¬Ô²¦Ñ=2Éϵĵ㵽ֱÏߦÑ(cos¦È+
3
sin¦È)=6
µÄ¾àÀëµÄ×îСֵ£®
£¨3£©Ñ¡ÐÞ4-5£»²»µÈʽѡ½²Öªx£¬y£¬zΪÕýʵÊý£¬ÇÒ
1
x
+
1
y
+
1
z
=1£¬Çóx+4y+9zµÄ×îСֵ¼°È¡µÃ×îСֵʱx£¬y£¬zµÄÖµ£®
·ÖÎö£º£¨1£©¢ÙÏÈÇó³ö¾ØÕóAµÄÌØÕ÷¶àÏîʽ£¬ÁîÌØÕ÷¶àÏîʽµÈÓÚÁ㣬ÇóµÃÌØÕ÷Öµ£¬¼´¿ÉÇóµÃÌØÕ÷ÏòÁ¿
¦Á1
¡¢
¦Á2
£®
¢ÚÓÉ
¦Á
=m
¦Á1
+n
¦Á2
ÇóµÃm¡¢nµÄÖµ£¬ÔÙÓÉA5
¦Á
=A5(3
¦Á1
+
¦Á2
)=3(A5
¦Á1
)+A5
¦Á2
£¬ÔËËãÇóµÃ½á¹û£®
£¨2£©°ÑÔ²¡¢Ö±Ïߵļ«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬Çó³öÔ²Ðĵ½Ö±ÏߵľàÀ룬ÔÙ½«´Ë¾àÀë¼õÈ¥°ë¾¶£¬¼´µÃËùÇó£®
£¨3£©ÓÉ¿ÂÎ÷²»µÈʽµÃ
x+4y+9z=[(
x
)
2
+(2
y
)
2
+(3
z
)
2
]•[(
1
x
)
2
+(
1
y
)
2
+(
1
z
)
2
]
                
£¬ÔÙÀûÓûù±¾
²»µÈʽÇóµÃËüµÄ×îСֵ£®
½â´ð£º½â£º£¨1£©¢Ù¾ØÕóAµÄÌØÕ÷¶àÏîʽΪf(¦Ë)=
.
¦Ë-1
1
-2
¦Ë-4
.
=¦Ë2-5¦Ë+6£¬Áîf£¨¦Ë£©=0£¬µÃ¦Ë1=2£¬¦Ë2=3£¬
µ±¦Ë1=2ʱ£¬µÃ
¦Á1
=
2
1
£¬µ±¦Ë2=3ʱ£¬µÃ
¦Á2
=
1
1
£®¡­£¨3·Ö£©
¢ÚÓÉ
¦Á
=m
¦Á1
+n
¦Á2
µÃ
2m+n=7
m+n=4
£¬µÃm=3£¬n=1£®
¡àA5
¦Á
=A5(3
¦Á1
+
¦Á2
)=3(A5
¦Á1
)+A5
¦Á2
=3(
¦Ë
5
1
¦Á1
)+
¦Ë
5
2
¦Á2
=3¡Á25
2
1
+35
1
1
=
435
339
£®¡­£¨7·Ö£©
£¨2£©½â£ºÓÉ ¦Ñ=2¼´¦Ñ2=4£¬ÔòÒ×µÃx2+y2=4£¬ÓɦÑ(cos¦È+
3
sin¦È)=6
Ò×µÃx+
3
y-6=0
£¬
¡àÔ²ÐÄ£¨0£¬0£©µ½Ö±ÏߵľàÀëΪd0=
|0+0-6|
12+(
3
)
2
=3
£¬
¡ßÓÖÔ²µÄ°ë¾¶Îª2£¬
¡àÔ²Éϵĵ㵽ֱÏߵľàÀëµÄ×îСֵΪd=d0-2=3-2=1£®¡­£¨7·Ö£©
£¨3£©½â£ºÓÉ¿ÂÎ÷²»µÈʽµÃ
x+4y+9z=[(
x
)
2
+(2
y
)
2
+(3
z
)
2
]•[(
1
x
)
2
+(
1
y
)
2
+(
1
z
)
2
]
                

¡Ý
(
x
1
x
 +2
y
1
y
+3z•
1
z
)
2
=36£¬
µ±ÇÒ½öµ±x=2y=3zʱµÈºÅ³ÉÁ¢£¬´Ëʱx=6£¬y=3£¬z=2£¬
ËùÒÔµ±x=6£¬y=3£¬z=2ʱ£¬x+4y+9zÈ¡µÃ×îСֵ36£®¡­£¨7·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éµãµÄ¼«×ø±êÓëÖ±½Ç×ø±êµÄ»¥»¯£¬¾ØÕóµÄÌØÕ÷ÖµÓëÌØÕ÷ÏòÁ¿£¬¿ÂÎ÷²»µÈʽµÄÓ¦Óã¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

±¾ÌâÓУ¨1£©¡¢£¨2£©¡¢£¨3£©Èý¸öÑ¡ÔñÌ⣬ÿÌâ7·Ö£¬Ç뿼ÉúÈÎÑ¡2Ìâ×÷´ð£¬Âú·Ö14·Ö£®Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄÇ°Á½Ìâ¼Ç·Ö£®
£¨1£©£®Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÒÑÖª¾ØÕóA=
1a
-1b
£¬AµÄÒ»¸öÌØÕ÷Öµ¦Ë=2£¬Æä¶ÔÓ¦µÄÌØÕ÷ÏòÁ¿ÊǦÁ1=
2
1
£®
£¨¢ñ£©Çó¾ØÕóA£»
£¨¢ò£©ÈôÏòÁ¿¦Â=
7
4
£¬¼ÆËãA2¦ÂµÄÖµ£®

£¨2£©£®Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÒÑÖªÍÖÔ²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ2=
12
3cos2¦È+4sin2¦È
£¬µãF1£¬F2ΪÆä×ó¡¢ÓÒ½¹µã£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
x=2+
2
2
t
y=
2
2
t
£¨tΪ²ÎÊý£¬t¡ÊR£©£®ÇóµãF1£¬F2µ½Ö±ÏßlµÄ¾àÀëÖ®ºÍ£®
£¨3£©£®Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
ÒÑÖªx£¬y£¬z¾ùΪÕýÊý£®ÇóÖ¤£º
x
yz
+
y
zx
+
z
xy
¡Ý
1
x
+
1
y
+
1
z
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¡¾Ñ¡×öÌâ¡¿ÔÚA£¬B£¬C£¬DËÄСÌâÖÐÖ»ÄÜÑ¡×ö2Ì⣬ÿÌâ10·Ö£¬¹²¼Æ20·Ö£®ÇëÔÚ´ðÌ⿨ָ¶¨ÇøÓòÄÚ×÷´ð£¬½â´ðʱд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
21-1£®£¨Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»£©
ÉèMÊÇ°Ñ×ø±êƽÃæÉϵĵãµÄºá×ø±êÉ쳤µ½2±¶£¬×Ý×ø±êÉ쳤µ½3±¶µÄÉìѹ±ä»»£®
£¨1£©Çó¾ØÕóMµÄÌØÕ÷Öµ¼°ÏàÓ¦µÄÌØÕ÷ÏòÁ¿£»
£¨2£©ÇóÄæ¾ØÕóM-1ÒÔ¼°ÍÖÔ²
x2
4
+
y2
9
=1ÔÚM-1µÄ×÷ÓÃϵÄÐÂÇúÏߵķ½³Ì£®
21-2£®£¨Ñ¡ÐÞ4-4£º²ÎÊý·½³Ì£©
ÒÔÖ±½Ç×ø±êϵµÄÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖᣮÒÑÖªµãPµÄÖ±½Ç×ø±êΪ£¨1£¬-5£©£¬µãMµÄ¼«×ø±êΪ£¨4£¬
¦Ð
2
£©£¬ÈôÖ±Ïßl¹ýµãP£¬ÇÒÇãб½ÇΪ 
¦Ð
3
£¬Ô²CÒÔMΪԲÐÄ¡¢4Ϊ°ë¾¶£®
£¨1£©ÇóÖ±Ïßl¹ØÓÚtµÄ²ÎÊý·½³ÌºÍÔ²CµÄ¼«×ø±ê·½³Ì£»
£¨2£©ÊÔÅж¨Ö±ÏßlºÍÔ²CµÄλÖùØϵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º¸£½¨Ê¡09-10ѧÄê¸ß¶þÏÂѧÆÚÆÚÄ©ÊýѧÀí¿Æ¿¼ÊÔÊÔÌâ ÌâÐÍ£º½â´ðÌâ

£¨¹²2СÌâ×ö´ð£¬Ã¿Ð¡Ìâ7·Ö£©

1£®£¨Ñ¡ÐÞ4¡ª2   ¾ØÕóÓë±ä»»£©£¨±¾ÌâÂú·Ö7·Ö£©

±ä»»Êǽ«Æ½ÃæÉÏÿ¸öµãµÄºá×ø±ê³Ë2£¬×Ý×ø±ê³Ë4£¬±äµ½µã¡£

£¨1£©Çó±ä»»µÄ¾ØÕó£»

£¨2£©Ô²Ôڱ任µÄ×÷ÓÃϱä³ÉÁËʲôͼÐΣ¿

 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2012-2013ѧÄê½­ËÕÊ¡ÄÏͨÊк£ÃÅÖÐѧ¸ßÈý£¨ÉÏ£©¿ªÑ§¼ì²âÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

¡¾Ñ¡×öÌâ¡¿ÔÚA£¬B£¬C£¬DËÄСÌâÖÐÖ»ÄÜÑ¡×ö2Ì⣬ÿÌâ10·Ö£¬¹²¼Æ20·Ö£®ÇëÔÚ´ðÌ⿨ָ¶¨ÇøÓòÄÚ×÷´ð£¬½â´ðʱд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
21-1£®£¨Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»£©
ÉèMÊÇ°Ñ×ø±êƽÃæÉϵĵãµÄºá×ø±êÉ쳤µ½2±¶£¬×Ý×ø±êÉ쳤µ½3±¶µÄÉìѹ±ä»»£®
£¨1£©Çó¾ØÕóMµÄÌØÕ÷Öµ¼°ÏàÓ¦µÄÌØÕ÷ÏòÁ¿£»
£¨2£©ÇóÄæ¾ØÕóM-1ÒÔ¼°ÍÖÔ²+=1ÔÚM-1µÄ×÷ÓÃϵÄÐÂÇúÏߵķ½³Ì£®
21-2£®£¨Ñ¡ÐÞ4-4£º²ÎÊý·½³Ì£©
ÒÔÖ±½Ç×ø±êϵµÄÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖᣮÒÑÖªµãPµÄÖ±½Ç×ø±êΪ£¨1£¬-5£©£¬µãMµÄ¼«×ø±êΪ£¨4£¬£©£¬ÈôÖ±Ïßl¹ýµãP£¬ÇÒÇãб½ÇΪ £¬Ô²CÒÔMΪԲÐÄ¡¢4Ϊ°ë¾¶£®
£¨1£©ÇóÖ±Ïßl¹ØÓÚtµÄ²ÎÊý·½³ÌºÍÔ²CµÄ¼«×ø±ê·½³Ì£»
£¨2£©ÊÔÅж¨Ö±ÏßlºÍÔ²CµÄλÖùØϵ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸