精英家教网 > 高中数学 > 题目详情
1.已知an=(20-n)×1.1n(0<n<20),求数列{an}中的最大项.

分析 根据数列项的最大值的条件进行求解即可.

解答 解:设数列{an}中的最大项为an
则满足(20-n)×1.1n≥(19-n)×1.1n+1,且(20-n)×1.1n≥(21-n)×1.1n-1
∴9≤n≤10,
故当n=9或10时,数列an最大,最大为a9=a10=10×1.110

点评 本题主要考查数列的函数特性,根据数列最大项的条件,解不等式组是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知f(x)=$\left\{\begin{array}{l}{(3a-1)x+4a,x<1}\\{{a}^{x-1},x≥1}\end{array}\right.$,对任意x1,x2∈R,都有(x1-x2)[f(x1)-f(x2)]<0,则实数a的取值范围是(  )
A.(0,1)B.($\frac{2}{7}$,$\frac{1}{3}$)C.[$\frac{2}{7}$,$\frac{1}{3}$)D.[$\frac{2}{7}$,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.求和:12-32+52-72+…+(-1)n+1(2n-1)2=$\left\{\begin{array}{l}{-2{n}^{2},n为偶数}\\{2{n}^{2}-1,n为奇数}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x-$\frac{a}{x}$.
(1)若f(x)在(1,+∞)上为增函数,求a的取值范围.
(2)当x∈(0,+∞)时,f(x)≥2恒成立,求a的取值范围.
(3)当x∈(1,+∞),x2-mx+4>0恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.假设关于某设备的使用年限x和所支出的维修费用y(万元),有如下的统计资料:
使用年限x23456
维修费用y2.23.85.56.57.0
若由资料知y对x呈线性相关关系,试求:
(1)线性回归方程$\widehat{y}$=$\widehat{a}$+bx的回归系数$\widehat{a}$,$\widehat{b}$;
(2)判断回归模型拟合效果的好坏.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求下列函数的值域:
(1)y=2x+1,x∈{1,2,3,4,5};
(2)y=-x2-2x+3(-5≤x≤-2);
(3)y=$\sqrt{x}$+x+1,x∈[1,4];
(4)y=$\frac{1-{x}^{2}}{1+{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.不等式ax2+5x-4<0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设f(x)=asin(πx+θ)+bcos(πx+θ),其中a,b,θ为非零实数.若f(2008)=-1,求f(2009)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}满足a1=2,an+1+an=2n+3.
(1)求数列{an}的通项公式;
(2)令Tn=a2n+1a2n-a2na2n-1+a2n-1a2n-2-a2n-2a2n-3+…+a3a2-a2a1,求Tn

查看答案和解析>>

同步练习册答案