精英家教网 > 高中数学 > 题目详情
已知极点为直角坐标系的原点,极轴为x轴正半轴且单位长度相同的极坐标系中,直线l:ρcos(θ-
π
4
)=
2
2
与直角坐标系中的曲线C:
x=cosθ
y=
2
sinθ
(θ为参数),交于A、B两点.
(Ⅰ)求直线l在直角坐标系下的方程;
(Ⅱ)求点M(-1,2)与A、B两点的距离之积|MA||MB|.
考点:参数方程化成普通方程
专题:选作题,坐标系和参数方程
分析:(Ⅰ)利用直角坐标与极坐标间的关系,可求直线l在直角坐标系下的方程;
(Ⅱ)求出曲线C的普通方程,与直线方程联立,求出A,B的坐标,即可求点M(-1,2)与A、B两点的距离之积|MA||MB|.
解答: 解:(Ⅰ)由l:ρcos(θ-
π
4
)=
2
2
得 ρcosθ+ρsinθ=1(3分)
从而l在直角坐标系中方程为x+y=1(4分)
(Ⅱ)曲线C的普通方程为
y2
2
+x2=1
(5分)
2x2+y2=2
x+y=1
得 
x=-
1
3
y=
4
3
或 
x=1
y=0

从而 A(1,0),B( -
1
3
 , 
4
3
 )
.(7分)
又M(-1,2)
所以|MA||MB|=
(1+1)2+(0-2)2
(-
1
3
+1)2+(
4
3
-2)2
=
8
3
(10分)
点评:本小题主要考查圆的参数方程和直线的极坐标方程与直角坐标方程的互化,以及直线与圆的位置关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=-2cosx,x∈[0,π]在点P处的切线与函数g(x)=
1
2
x2+lnx在点Q处的切线平行,则直线PQ的斜率为(  )
A、
1
π
B、
1
2-π
C、2
D、π-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c都是正数,求
a
b+c
+
b
c+a
+
c
a+b
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准?用水量不超过a的部分按照平价收费,超过a的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了 100位居民某年的月均用水量(单位:t),制作了频率分布直方图,
(Ⅰ)由于某种原因频率分布直方图部分数据丢失,请在图中将其补充完整;
(Ⅱ)用样本估计总体,如果希望80%的居民每月的用水量不超出标准,则月均用水量的最低标准定为多少吨,并说明理由;
(Ⅲ)若将频率视为概率,现从该市某大型生活社区随机调查3位居民的月均用水量(看作有放回的抽样),其中月均用水量不超过(Ⅱ)中最低标准的人数为x,求x的分布列和均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆是C:(x+
3
2+y2=16,点N(
3
,0),Q是圆C上的一动点,QN的垂直平分线交CQ于点M,设点M的轨迹为E.
(1)求轨迹E的方程;
(2)过点P(1,0)的直线l交轨迹E于两个不同的点A,B,△AOB(O是坐标原点)的面积为S,求面积S的最大值,并求出面积最大时直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n个白球.从甲,乙两袋中各任取2个球.
(Ⅰ)当n=1时,记取到的4个球中是白球的个数为ξ,求ξ的分布列和期望;
(Ⅱ)若取到的4个球中至少有2个红球的概率为
3
4
,求n.

查看答案和解析>>

科目:高中数学 来源: 题型:

《保护法》规定食品的汞含量不得超过1.00ppm.现从一批罗非鱼中随机地抽出15条作样本,检测得各条鱼的汞含量的茎叶图(以小数点前一位数字为茎,小数点前一位数字为叶)如图所示:

(l)若某检查人员从这15条鱼中,随机地抽出3条,求恰有1条鱼汞含量超标的概率;
(2)以此15条鱼的样本数据来估计这批鱼的总体数据.若从这批鱼中任选3条鱼,记ξ表示抽到的鱼汞含量超标的条数,求ξ的分布列及数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的首项a1=3,若对于任意的正整数n都有an+1=2an+3.
(1)设bn=an+3,求证:数列{bn}是等比数列;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在Rt△A′BC中,A′B=BC=2,D,E分别是A′B,A′C的中点,将△A′DE沿线段DE折起到△ADE,使平面ADE⊥平面DBCE.
(Ⅰ)若P,Q分别为AB,EC的中点,证明PQ∥平面AED.
(Ⅱ)若M为DE的中点,求三棱锥E-PMC的体积.

查看答案和解析>>

同步练习册答案