精英家教网 > 高中数学 > 题目详情
16.实数a,b∈R,i是虚数单位,若a+2i与2-bi互为共轭复数,则a+b=4.

分析 利用共轭复数的概念结合已知求得a,b的值,则答案可求.

解答 解:∵a+2i与2-bi互为共轭复数,
∴$\left\{\begin{array}{l}{a=2}\\{b=2}\end{array}\right.$,则a+b=4.
故答案为:4.

点评 本题考查复数相等的条件,考查了共轭复数的概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=(m-1)x2+2mx+3为偶函数,则f(x)的单调递增区间为(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知直线l1:2x+ay=3和l2:(a+2)x-y=1直线互相垂直,则实数a的值为(  )
A.-2B.2C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.数列{an}中,a1=1,an+1=$\frac{{a}_{n}}{2{a}_{n}+1}$,试推测出数列{an}的通项公式为an=$\frac{1}{2n-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a、b∈R,a+b=1,用分析法证明:(a+2)2+(b+2)2≥$\frac{25}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设α,β是两个不同的平面,l,m是两条不同的直线,命题p:α∥β,l?α,m?β,则l∥m;命题q:l∥α,m⊥l,m?β,则β⊥α.下列命题为真命题的是(  )
A.p或qB.p且qC.p或qD.p且q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知关于x的函数f(x)=m(x2-4x+lnx)-(2m2+1)x+2lnx,其中m∈R,其在点B(1,0)处的切线所对应的函数为g(x)=0.
(1)已知函数f(x)的图象与直线y=k2-2k无公共点,求实数k的取值范围;
(2)已知p≤0,若对任意的x∈[1,2],总有f(x)≥$\frac{(p-2)x}{2}$+$\frac{p+2}{2x}$+2x-x2成立,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设二次函数f(x)满足:f(0)=-1,f(x)-2=0的两根分别为-3和1.
(1)求f(x)的解析式.
(2)在区间[0,2]上,y=f(x)的图象恒在直线y=kx-3的上方,求k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$sin({\frac{π}{4}-α})=\frac{5}{13},α∈(0,\frac{π}{4})$,则$\frac{cos2α}{{cos({\frac{π}{4}+α})}}$的值为(  )
A.$\frac{24}{13}$B.$-\frac{24}{13}$C.$\frac{10}{13}$D.$-\frac{10}{13}$

查看答案和解析>>

同步练习册答案