精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+2x+a•lnx.
(1)若函数f(x)在区间(0,1]上恒为单调函数,求实数a的取值范围;
(2)当t≥1时,不等式f(2t-1)≥2f(t)-3恒成立,求实数a的取值范围.
(1)由f(x)=x2+2x+a•lnx,得f(x)=2x+2+
a
x

要使f(x)在(0,1]上恒为单调函数,只需f′(x)≥0或f′(x)≤0在(0,1]上恒成立.
∴只需a≥-(2x2+2x),或a≤-(2x2+2x)在(0,1]上恒成立.
记g(x)=-(2x2+2x),
∵0<x≤1,
∴-4≤g(x)<0,
∴a≤-4,或a≥0.(5分)
(2)∵f(x)=x2+2x+a•lnx,
∴由f(2t-1)≥2f(t)-3,得
(2t-1)2+2(2t-1)+a•ln(2t-1)≥2(t2+2t+alnt)-3,
化简得2(t-1)2a•ln
t2
2t-1

∵t>1时有t2>2t-1>0,即
t2
2t-1
>1

ln
t2
2t-1
>0
,∴a≤
2(t-1)2
ln
t2
2t-1
,①-------------(7分)
构造函数h(x)=ln(x+1)-x,x>-1,则h(x)=
1
1+x
-1=-
x
1+x

∴h(x)在x=0处取得极大值,也是最大值.
∴h(x)≤h(0)在x>-1范围内恒成立,而h(0)=0,
从而ln(1+x)≤x在x>-1范围内恒成立.
∴在t>1时,ln
t2
2t-1
=ln[1+
(t-1)2
2t-1
(t-1)2
2t-1
<(t-1)2
而t=1时,ln
t2
2t-1
=(t-1)2=0,
∴当t≥1时,ln
t2
2t-1
≤(t-1)2恒成立,
即t≥1时,总有
2(t-1)2
ln
t2
2t-1
,②
由式①和式②可知,实数a的取值范围是a≤2.(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

定义在R上的函数f(x)=
1
3
ax3+bx2+cx+2
同时满足以下条件:
①f(x)在(0,1)上是减函数,在(1,+∞)上是增函数;
②f′(x)是偶函数;
③f(x)在x=0处的切线与直线y=x+2垂直.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)设g(x)=[
1
3
x3-f(x)]•ex,求函数g(x)在[m,m+1]上的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,抛物线轴所围成的区域是一块等待开垦的土地,现计划在该区域内围出一块矩形地块ABCD作为工业用地,其中A、B在抛物线上,C、D在轴上.已知工业用地每单位面积价值为,其它的三个边角地块每单位面积价值元.
(1)求等待开垦土地的面积;
(2)如何确定点C的位置,才能使得整块土地总价值最大.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=mln(x-1)+(m-1)x,m∈R是常数.
(1)若m=
1
2
,求函数f(x)的单调区间;
(2)若函数f(x)存在最大值,求m的取值范围;
(3)若对函数f(x)定义域内任意x1、x2(x1≠x2),
f(x1)+f(x2)
2
>f(
x1+x2
2
)
恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若对一切x∈R,不等式4x+(a-1)2x+1≥0恒成立,则a的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某地方政府为科技兴市,欲将如图所示的一块不规则的非农业用地规划建成一个矩形的高科技工业园区,已知AB⊥BC,OABC,且AB=BC=6km,AO=3km,曲线段OC是二次函数y=ax2图象的一段,如果要使矩形的相邻两边分别落在AB,BC上,且一个顶点落在曲线段OC上,问应如何规划才能使矩形工业园区BQPN的用地面积最大?并求出最大的用地面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax3+bx2+cx在点x0处取得极大值4,其导函数y=f′(x)的图象经过点(0,0),(2,0),如图,
(1)求a,b,c的值;
(2)若x∈[-1,1],求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=x3-2x,其中a-1≤x≤a+1,a∈R,设集合M={(m,f(n))|m,n∈[a-1,a+1]|},若f(x)单调递增,则S的最小值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

[2013·湖南高考]若x2dx=9,则常数T的值为________.

查看答案和解析>>

同步练习册答案