精英家教网 > 高中数学 > 题目详情

【题目】已知正项数列{an}的前n项和为Sn , 若{an}和 都是等差数列,且公差相等.
(1)求数列{an}的通项公式;
(2)令bn= ,cn=bnbn+1 , 求数列{cn}的前n项和Tn

【答案】
(1)解:∵{an}为等差数列,且Sn为其前n项和,∴

又∵ 为等差数列,且与{an}公差相等,

,∴

∴an=a1+(n﹣1)d=


(2)解:∵ Cn=bnbn+1,

=

∴Tn=C1+…+Cn=


【解析】(1)利用等差数列的通项公式与求和公式即可得出.(2)利用裂项求和方法即可得出.
【考点精析】本题主要考查了数列的前n项和和数列的通项公式的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某电脑公司有6名产品推销员,其工作年限与年推销金额数据如下表:

推销员编号

1

2

3

4

5

工作年限x年

3

5

6

7

9

年推销金额y万元

2

3

3

4

5


(1)从编号1﹣5的五位推销员中随机取出两位,求他们年推销金额之和不少于7万元的概率;
(2)求年推销金额y关于工作年限x的线性回归方程 = x+ ;若第6名产品推销员的工作年限为11年,试估计他的年推销金额. 附:回归直线的斜率和截距的最小二乘法估计公式为: = =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:在数列{an}中,若an2﹣an12=p,(n≥2,n∈N* , p为常数),则称{an}为“等方差数列”,下列是对“等方差数列”的有关判断:
①若{an}是“等方差数列”,则数列{ }是等差数列;
②{(﹣2)n}是“等方差数列”;
③若{an}是“等方差数列”,则数列{akn}(k∈N* , k为常数)也是“等方差数列”;
④若{an}既是“等方差数列”,又是等差数列,则该数列是常数数列.
其中正确命题的个数为( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC三边所在直线方程:lAB:3x﹣2y+6=0,lAC:2x+3y﹣22=0,lBC:3x+4y﹣m=0(m∈R,m≠30).
(1)判断△ABC的形状;
(2)当BC边上的高为1时,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD﹣A1B1C1D1中,AD1与BD所成的角是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+ ,g(x)=﹣x﹣ln(﹣x)其中a≠0,
(1)若x=1是函数f(x)的极值点,求实数a的值及g(x)的单调区间;
(2)若对任意的x1∈[1,2],x2∈[﹣3,﹣2]使得f(x1)≥g(x2)恒成立,且﹣2<a<0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是二次函数f(x)=x2﹣bx+a的部分图象,则函数g(x)=ex+f′(x)的零点所在的区间是(
A.(﹣1,0)
B.(0,1)
C.(1,2)
D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:对于m∈[﹣1,1],不等式a2﹣5a﹣3≥ 恒成立;命题q:不等式x2+ax+2<0有解,若p∨q为真,且p∧q为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4cosωxsin(ωx+ )+a(ω>0)图象上最高点的纵坐标为2,且图象上相邻两个最高点的距离为π.
(Ⅰ)求a和ω的值;
(Ⅱ)求函数f(x)在[0,π]上的单调递减区间.

查看答案和解析>>

同步练习册答案