【题目】某电脑公司有6名产品推销员,其工作年限与年推销金额数据如下表:
推销员编号 | 1 | 2 | 3 | 4 | 5 |
工作年限x年 | 3 | 5 | 6 | 7 | 9 |
年推销金额y万元 | 2 | 3 | 3 | 4 | 5 |
(1)从编号1﹣5的五位推销员中随机取出两位,求他们年推销金额之和不少于7万元的概率;
(2)求年推销金额y关于工作年限x的线性回归方程 = x+ ;若第6名产品推销员的工作年限为11年,试估计他的年推销金额. 附:回归直线的斜率和截距的最小二乘法估计公式为: = , = ﹣ .
【答案】
(1)解:从编号1﹣5的五位推销员中随机选出两位,他们的年推销金额组合如下{2,3(1)},{2,3(2)},{2,4},{2,5},{3(1),3(2)},{3(1),4},{3(1),5},{3(2),4},{3(2),5},{4,5}共10种.
其中满足两人年推销金额不少于7万元的情况共有6种,则所求概率
(2)解:由表中数据可知: ,由上公式可得 , .
故 ,
又当x=11时, ,
故第6名产品推销员的工作年限为11年,他的年推销金额约为5.9万元
【解析】(1)列举基本事件,即可求出概率;(2)将表中数据,先求出x,y的平均数,累加相关的数据后,代入相关系数公式,计算出回归系数,得到推销金额y关于工作年限x的线性回归方程,将工作年限为11年代,代入推销金额y关于工作年限x的线性回归方程,即可预报出他的年推销金额的估算值.
科目:高中数学 来源: 题型:
【题目】某公司为对本公司的160名员工的身体状况进行调查,先将员工随机编号为1,2,3,…,159,160,采用系统抽样的方法(等间距地抽取,每段抽取一个个体)将抽取的一个样本.已知抽取的员工中最小的两个编号为5,21,那么抽取的员工中,最大的编号应该是( )
A.141
B.142
C.149
D.150
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}是等差数列,其中a10=30,a20=50.
(1)求数列{an}的通项公式;
(2)若bn=an﹣20,求数列{bn}的前n项和Tn的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 .
(1)若 ,求函数y=f(x)的单调区间;
(2)若x=﹣1是函数y=f(x)的一个极值点,试判断此时函数y=f(x)的零点个数,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 且函数y=f(x)图象上点(1,f(1))处的切线斜率为0.
(1)试用含有a的式子表示b,并讨论f(x)的单调性;
(2)对于函数图象上的不同两点A(x1 , y1),B(x2 , y2)如果在函数图象上存在点M(x0 , y0),(x0∈(x1 , x2))使得点M处的切线l∥AB,则称AB存在“跟随切线”.特别地,当 时,又称AB存在“中值跟随切线”.试问:函数f(x)上是否存在两点A,B使得它存在“中值跟随切线”,若存在,求出A,B的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x﹣alnx(a∈R)
(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;
(2)求函数f(x)的极值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等比数列{an}中,已知a1=2,a4=16.
(1)求数列{an}的通项公式an;
(2)若a3 , a5分别是等差数列{bn}的第4项和第16项,求数列{bn}的通项公式及前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项数列{an}的前n项和为Sn , 若{an}和 都是等差数列,且公差相等.
(1)求数列{an}的通项公式;
(2)令bn= ,cn=bnbn+1 , 求数列{cn}的前n项和Tn .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com