精英家教网 > 高中数学 > 题目详情

【题目】某投资公司现提供两种一年期投资理财方案,一年后投资盈亏的情况如下表:

投资股市

获利

不赔不赚

亏损

购买基金

获利

不赔不赚

亏损

概率

概率

(Ⅰ)甲、乙两人在投资顾问的建议下分别选择“投资股市”和“买基金”,若一年后他们中至少有一人盈利的概率大于,求的取值范围;

(Ⅱ)若,某人现有万元资金,决定在“投资股市”和“购买基金”这两种方案中选择出一种,那么选择何种方案可使得一年后的投资收益的数学期望值较大.

【答案】(Ⅰ)(Ⅱ)应选择“投资股市”可使得一年后的投资收益的数学期望值较大

【解析】试题分析:( I)设事件为“甲投资股市且盈利”,事件为“乙购买基金且盈利”,事件为“一年后甲、乙中至少有一人盈利”,则,其中A,B相互独立.利用相互独立事件、互斥事件的概率计算公式即可得出概率.

( II)假设此人选择“投资股市”,记ξ为盈利金额(单位万元),可得ξ的分布列为.假设此人选择“购买基金”,记η为盈利金额(单位万元),可得η的分布列,计算即可比较出大小关系.

试题解析:

(Ⅰ)设事件为“甲投资股市且盈利”,事件为“乙购买基金且盈利”,事件为“一年后甲、乙中至少有一人盈利”,则,其中相互独立,

因为,则,即

,由解得

又因为,所以,故

(Ⅱ)假设此人选择“投资股市”,记为盈利金额(单位万元),则的分布列为:

假设此人选择“购买基金”,记为盈利金额(单位万元),则的分布列为:

因为,即,所以应选择“投资股市”可使得一年后的投资收益的数学期望值较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列哪组中的函数f(x)与g(x)相等(
A.f(x)=x2
B.f(x)=x+1,g(x)= +1
C.f(x)=x,g(x)=
D.f(x)= ,g(x)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,一根水平放置的长方体枕木的安全负荷与它的厚度d的平方和宽度a的乘积成正比,与它的长度l的平方成反比.

(1)在a>d>0的条件下,将此枕木翻转90°(即宽度变为了厚度),枕木的安全负荷会发生变化吗?变大还是变小?
(2)现有一根横截面为半圆(半圆的半径为R= )的柱形木材,用它截取成横截面为长方形的枕木,其长度即为枕木规定的长度l,问横截面如何截取,可使安全负荷最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态,一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:车辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:

租用单车数量(千辆)

2

3

4

5

8

每天一辆车平均成本(元)

3.2

2.4

2

1.9

1.7

根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: ,方程乙: .

(1)为了评价两种模型的拟合效果,完成以下任务:

①完成下表(计算结果精确到0.1)(备注: 称为相应于点的残差(也叫随机误差));

租用单车数量(千辆)

2

3

4

5

8

每天一辆车平均成本(元)

3.2

2.4

2

1.9

1.7

模型甲

估计值

2.4

2.1

1.6

残差

0

0.1

模型乙

估计值

2.3

2

1.9

残差

0.1

0

0

②分别计算模型甲与模型乙的残差平方和,并通过比较 的大小,判断哪个模型拟合效果更好.

(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放,根据市场调查,这个城市投放8千辆时,该公司平均一辆单一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.4,0.6,问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入—成本).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=aex+ +b(a>0).
(1)求f(x)在[0,+∞)上的最小值;
(2)设曲线y=f(x)在点(2,f(2))的切线方程为3x﹣2y=0,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)判断函数的单调性;

(Ⅱ)求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在实数集R上的可导函数f(x),满足f(x+2)是奇函数,且 >2,则不等式f(x)> x﹣1的解集是(
A.(﹣∞,2)
B.(2,+∞)
C.(0,2)
D.(﹣∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题p:关于x的不等式x2+(a﹣1)x+a2<0的解集是空集,命题q:已知二次函数f(x)=x2﹣mx+2满足 ,且当x∈[0,a]时,最大值是2,若命题“p且q”为假,“p或q”为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知已知圆 经过 两点,且圆心C在直线 上,求解:(1)圆C的方程;(2)若直线 与圆 总有公共点,求实数 的取值范围.
(1)求圆C的方程;
(2)若直线 与圆 总有公共点,求实数 的取值范围.

查看答案和解析>>

同步练习册答案