精英家教网 > 高中数学 > 题目详情

【题目】已知在实数集R上的可导函数f(x),满足f(x+2)是奇函数,且 >2,则不等式f(x)> x﹣1的解集是(
A.(﹣∞,2)
B.(2,+∞)
C.(0,2)
D.(﹣∞,1)

【答案】A
【解析】解:∵f(x+2)是奇函数,
∴f(x)关于(2,0)对称,f(2)=0
>2,
∴0<f′(x)<
令g(x)=f(x)﹣ x,
则g′(x)=f′(x)﹣ <0,函数在R上单调递减,
∵g(2)=f(2)﹣1=﹣1,
∴不等式f(x)> x﹣1可化为g(x)>g(2),
∴x<2,
故选:A.
【考点精析】通过灵活运用函数奇偶性的性质,掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在D上的函数f(x)若同时满足:①存在M>0,使得对任意的x1 , x2∈D,都有|f(x1)﹣f(x2)|<M;②f(x)的图象存在对称中心.则称f(x)为“P﹣函数”.
已知函数f1(x)= 和f2(x)=lg( ﹣x),则以下结论一定正确的是(
A.f1(x)和 f2(x)都是P﹣函数
B.f1(x)是P﹣函数,f2(x)不是P﹣函数
C.f1(x)不是P﹣函数,f2(x)是P﹣函数
D.f1(x)和 f2(x)都不是P﹣函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课程表上的相邻两节文化课之间最多间隔1节艺术课的概率为(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某投资公司现提供两种一年期投资理财方案,一年后投资盈亏的情况如下表:

投资股市

获利

不赔不赚

亏损

购买基金

获利

不赔不赚

亏损

概率

概率

(Ⅰ)甲、乙两人在投资顾问的建议下分别选择“投资股市”和“买基金”,若一年后他们中至少有一人盈利的概率大于,求的取值范围;

(Ⅱ)若,某人现有万元资金,决定在“投资股市”和“购买基金”这两种方案中选择出一种,那么选择何种方案可使得一年后的投资收益的数学期望值较大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面四边形中, , 为等边三角形,现将沿翻折得到四面体,点分别为的中点.

(Ⅰ)求证:四边形为矩形;

(Ⅱ)当平面平面时,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(﹣x)+f(x)=0,f(x+4)=f(x)满足,且x∈(﹣2,0)时,f(x)=2x+ ,则f(log220)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中, 已知定圆,动圆过点且与圆相切,记动圆圆心的轨迹为曲线.

(1)求曲线的方程;

(2)设是曲线上两点,点关于轴的对称点为 (异于点),若直线分别交轴于点,证明: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,台风中心从A地以每小时20千米的速度向东北方向(北偏东)移动,离台风中心不超过300千米的地区为危险区域.城市B在A地的正东400千米处.请建立恰当的平面直角坐标系,解决以下问题:

(1) 求台风移动路径所在的直线方程;

(2)求城市B处于危险区域的时间是多少小时?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)= 是奇函数,则使f(x)>4成立的x的取值范围为

查看答案和解析>>

同步练习册答案