精英家教网 > 高中数学 > 题目详情

【题目】若函数f(x)= 是奇函数,则使f(x)>4成立的x的取值范围为

【答案】(0,
【解析】解:∵函数f(x)= 是奇函数,∴f(﹣x)=﹣f(x),即 ﹣=
= ,1﹣a2x=a﹣2x , 求得a=1,
∴f(x)= =1+
由f(x)>4,可得 1+ >4,∴ >3 且2x﹣1>0,即 1<2x
求得 0<x<
所以答案是:(0, ).
【考点精析】利用函数奇偶性的性质对题目进行判断即可得到答案,需要熟知在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知在实数集R上的可导函数f(x),满足f(x+2)是奇函数,且 >2,则不等式f(x)> x﹣1的解集是(
A.(﹣∞,2)
B.(2,+∞)
C.(0,2)
D.(﹣∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若以曲线上任意一点为切点作切线,曲线上总存在异于的点,以点为切点作切线,且,则称曲线具有“可平行性”,现有下列命题:

①函数的图象具有“可平行性”;

②定义在的奇函数的图象都具有“可平行性”;

③三次函数具有“可平行性”,且对应的两切点 的横坐标满足

④要使得分段函数的图象具有“可平行性”,当且仅当.

其中的真命题个数有()

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知已知圆 经过 两点,且圆心C在直线 上,求解:(1)圆C的方程;(2)若直线 与圆 总有公共点,求实数 的取值范围.
(1)求圆C的方程;
(2)若直线 与圆 总有公共点,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x)=2|xm|﹣1(m为实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为(
A.a<b<c
B.c<a<b
C.a<c<b
D.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 是奇函数.
(1)求实数m的值;
(2)若函数f(x)在区间[﹣1,a﹣2]上的最小值为﹣1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设A,B是x轴上的两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程为x-y+1=0,则直线PB的方程是( ).
A.x+y-5=0
B.2x-y-1=0
C.2y-x-4=0
D.2x+y-7=0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列判断错误的是(
A.“am2<bm2”是“a<b”的充分不必要条件
B.命题“x∈R,x3﹣x2≤0”的否定是“x∈R,x3﹣x2﹣1>0”
C.“若a=1,则直线x+y=0和直线x﹣ay=0互相垂直”的逆否命题为真命题
D.若p∧q为假命题,则p,q均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要制作一个如图的框架(单位:米).要求所围成的总面积为19.5(),其中是一个矩形, 是一个等腰梯形,梯形高 ,设米, 米.

(1)求关于的表达式;

(2)如何设计 的长度,才能使所用材料最少?

查看答案和解析>>

同步练习册答案