精英家教网 > 高中数学 > 题目详情

【题目】下列判断错误的是(
A.“am2<bm2”是“a<b”的充分不必要条件
B.命题“x∈R,x3﹣x2≤0”的否定是“x∈R,x3﹣x2﹣1>0”
C.“若a=1,则直线x+y=0和直线x﹣ay=0互相垂直”的逆否命题为真命题
D.若p∧q为假命题,则p,q均为假命题

【答案】D
【解析】解:由am2<bm2 , 两边同时乘以 得a<b,反之,由a<b,不一定有am2<bm2 , 如m2=0.
∴“am2<bm2”是”a<b”的充分不必要条件.故A正确;
命题“x∈R,x3﹣x2≤0”的否定是“x∈R,x3﹣x2﹣1>0”.故B正确;
“若a=1,则直线x+y=0和直线x﹣ay=0互相垂直”正确,其逆否命题正确;
若p∧q为假命题,则p,q中至少一个为假命题.故D错误.
故选:D.
【考点精析】利用命题的真假判断与应用对题目进行判断即可得到答案,需要熟知两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,台风中心从A地以每小时20千米的速度向东北方向(北偏东)移动,离台风中心不超过300千米的地区为危险区域.城市B在A地的正东400千米处.请建立恰当的平面直角坐标系,解决以下问题:

(1) 求台风移动路径所在的直线方程;

(2)求城市B处于危险区域的时间是多少小时?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)= 是奇函数,则使f(x)>4成立的x的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:sinθ=ρcos2θ,过点M(﹣1,2)的直线l: (t为参数)与曲线C相交于A、B两点.求:
(1)线段AB的长度;
(2)点M(﹣1,2)到A、B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平行四边形 的三个顶点的坐标为
(1)在 ABC中,求边AC中线所在直线方程;
(2)求平行四边形 的顶点D的坐标及边BC的长度;
(3)求 的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中,A(1,-4),B(6,6),C(-2,0).求:
(1)△ABC中平行于BC边的中位线所在直线的一般式方程和截距式方程;
(2)BC边的中线所在直线的一般式方程,并化为截距式方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校为了解学生的数学学习情况,在全校高一年级学生中进行了抽样调查,调查结果如表所示:

喜欢数学

不喜欢数学

合计

男生

60

20

80

女生

10

10

20

合计

70

30

100


(1)根据表中数据,问是否有95%的把握认为“男生和女生在喜欢数学方面有差异”;
(2)在被调查的女生中抽出5名,其中2名喜欢数学,现在从这5名学生中随机抽取3人,求至多有1人喜欢数学的概率.
附:参考公式:K2= ,其中n=a+b+c+d

P(K2≥k)

0.100

0.050

0.010

k

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个棱锥的侧棱长都相等,那么这个棱锥(
A.一定是正棱锥
B.一定不是正棱锥
C.是底面为圆内接多边形的棱锥
D.是底面为圆外切多边形的棱锥

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若两条异面直线所成的角为90°,则称这对异面直线为“理想异面直线对”,在连接正方体各顶点的所有直线中,“理想异面直线对”的对数为(
A.24
B.48
C.72
D.78

查看答案和解析>>

同步练习册答案