科目:高中数学 来源: 题型:
9 |
160 |
1 |
13 |
查看答案和解析>>
科目:高中数学 来源: 题型:
|
1 |
2 |
π |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
的切线在Y轴上的截距为bn,数列{an}满足:a1=2,an+1=f-1(an)(n∈N*).
(1)求数列{an}的通项公式;
(2)在数列{}中,仅当n=5时,取最小值,求A的取值范围;
(3)令函数g(x)=f-1(x)(1+x)2,数列{cn}满足:c1=,cn+1=g(cn)(n∈N*),求证:对于一切
n≥2的正整数,都满足:1<<2.
(文)已知函数f(x):(0<x<1)的反函数为f-1(x),数列{an}满足:a1=2,an+1=f-1(an) (n∈N*).
(1)求数列{an}的通项公式;
(2)设函数g(x)=f-1(x)(1+x)2在点(n,g(n))(n∈N*)处的切线在Y轴上的截距为bn,求数列{bn}的通项公式;
(3)在数列{bn+}中,仅当n=5时,bn+取最大值,求λ的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com