【题目】在四棱锥中,底面是边长为的菱形,对角线与相交于点,,平面,平面与平面所成的角为45°,是的中点.
(1)证明:平面平面;
(2)求异面直线与所成角的余弦值;
(3)求直线与平面所成角的正弦值.
【答案】(1)证明见解析(2)(3)
【解析】
(1)根据线面垂直可以得出,结合菱形的性质,可以得到,进而得出平面,依据面面垂直判定定理可得结果.
(2)取中点,根据平移找到异面直线与所成角,计算长度,利用余弦定理可得结果.
(3)找到平面的垂线并计算垂线段长度,并计算直线在平面的投影的长度,结合三角函数可得结果.
(1)证明:∵平面,∴,
又∵菱形中,且,
∴平面,∴平面平面;
(2)取中点连接,如图所示:
∴//,
∴与所成角为或其补角,
∵菱形中,
∴,且,
∵平面,∴,,
,又∵
∴平面,∴,
∴二面角的平面角为
∴中,;
∴中,∴;
中,
∴中,,
即与所成角余弦值为
(3)作延长线于,则平面
又∵平面平面,且平面平面,
∴平面,
∴与平面所成角为即
∵中,∴
∴中,,
,
即直线与平面所成角的正弦值为
科目:高中数学 来源: 题型:
【题目】某市为了解社区群众体育活动的开展情况,拟采用分层抽样的方法从A,B,C三个行政区抽出6个社区进行调查.已知A,B,C行政区中分别有12,18,6个社区.
(1)求从A,B,C三个行政区中分别抽取的社区个数;
(2)若从抽得的6个社区中随机的抽取2个进行调查结果的对比,求抽取的2个社区中至少有一个来自A行政区的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市为了引导居民合理用水,居民生活用水实行二级阶梯式水价计量方法,具体如下;第一阶梯,每户居民每月用水量不超过12吨,价格为4元/吨;第二阶梯,每户居民用水量超过12吨,超过部分的价格为8元/吨,为了了解全是居民月用水量的分布情况,通过抽样获得了100户居民的月用水量(单位:吨),将数据按照(全市居民月用水量均不超过16吨)分成8组,制成了如图1所示的频率分布直方图.
(Ⅰ)求频率分布直方图中字母的值,并求该组的频率;
(Ⅱ)通过频率分布直方图,估计该市居民每月的用水量的中位数的值(保留两位小数);
(Ⅲ)如图2是该市居民张某2016年1~6月份的月用水费(元)与月份的散点图,其拟合的线性回归方程是若张某2016年1~7月份水费总支出为312元,试估计张某7月份的用水吨数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将所有平面向量组成的集合记作,是从到的对应关系,记作或,其中、、、都是实数,定义对应关系的模为:在的条件下的最大值记作,若存在非零向量,及实数使得,则称为的一个特殊值;
(1)若,求;
(2)如果,计算的特征值,并求相应的;
(3)若,要使有唯一的特征值,实数、、、应满足什么条件?试找出一个对应关系,同时满足以下两个条件:①有唯一的特征值,②,并验证满足这两个条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】李克强总理在2018年政府工作报告指出,要加快建设创新型国家,把握世界新一轮科技革命和产业变革大势,深入实施创新驱动发展战略,不断增强经济创新力和竞争力.某手机生产企业积极响应政府号召,大力研发新产品,争创世界名牌.为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到一组销售数据,如表所示:
单价(千元) | ||||||
销量(百件) |
已知.
(1)若变量具有线性相关关系,求产品销量(百件)关于试销单价(千元)的线性回归方程;
(2)用(1)中所求的线性回归方程得到与对应的产品销量的估计值.当销售数据对应的残差的绝对值时,则将销售数据称为一个“好数据”.现从个销售数据中任取个子,求“好数据”个数的分布列和数学期望.
(参考公式:线性回归方程中的估计值分别为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设n∈N*且n≥2,集合
(1)写出集合中的所有元素;
(2)设(,···,),(,···,)∈,证明“=”的充要条件是=(i=1,2,3,···,n);
(3)设集合={︳(,···,)∈},求中所有正数之和.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com