精英家教网 > 高中数学 > 题目详情
已知函数f(x)是定义域为[-1,0)∪(0,1],其图象上的任意一点P(x,y)满足x2+y2=1,则下列命题正确的是
②③⑤
②③⑤
.(写出所有正确命题的编号)
①函数y=f(x)一定是偶函数;
②函数y=f(x)可能既不是奇函数,也不是偶函数;
③函数y=f(x)可能是奇函数;
④函数y=f(x)若是偶函数,则值域是[-1,0)或(0,1];
⑤函数y=f(x)的值域是(-1,1),则函数f(x)一定是奇函数.
分析:根据函数奇偶性的定义和函数的定义分别进行判断即可.
解答:解:∵P(x,y)满足x2+y2=1,
∴P位于单位圆上.
①当函数y=f(x)对应的图象在第一象限和第三象限时,函数为奇函数,∴①错误.
②函数y=f(x)可能既不是奇函数,也不是偶函数,正确.
③当函数y=f(x)对应的图象在第一象限和第三象限时,函数为奇函数,∴③正确;
④函数y=f(x)若是偶函数,则值域是(-1,0]或[0,1),∴④错误.
⑤函数y=f(x)的值域是(-1,1),则根据函数的定义可知,此时函数对应的图象为一,三象限或二,四象限的部分,∴根据图象的对称性可知,函数f(x)一定是奇函数.∴⑤正确.
故答案为:②③⑤.
点评:本题主要考查函数奇偶性的定义和应用,利用函数的定义和单位圆,结合数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2x+2-x
2
,g(x)=
2x-2-x
2

(1)计算:[f(1)]2-[g(1)]2
(2)证明:[f(x)]2-[g(x)]2是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=x+
a
x
的定义域为(0,+∞),且f(2)=2+
2
2
.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值.
(2)问:|PM|•|PN|是否为定值?若是,则求出该定值;若不是,请说明理由.
(3)设O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1y1),N(x2y2)
是f(x)图象上的两点,横坐标为
1
2
的点P满足2
OP
=
OM
+
ON
(O为坐标原点).
(Ⅰ)求证:y1+y2为定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn为数列{an}的前n项和,若Tn<m(Sn+1+1)对一切n∈N*都成立,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)是f(x)图象上的两点,且x1+x2=1.
(1)求证:y1+y2为定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,N≥2),求Sn
(3)在(2)的条件下,若an=
1
6
 ,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn为数列{an}的前n项和.求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直线y=m与两个相邻函数的交点为A,B,若m变化时,AB的长度是一个定值,则AB的值是(  )

查看答案和解析>>

同步练习册答案