精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面为菱形,,侧棱底面,点的中点,作,交于点.

1)求证:平面

2)求证:

3)求二面角的余弦值.

【答案】1)见解析(2)见解析 3

【解析】

1)连接,连接,根据中位线定理证明,即可证得平面.

2)先证平面.又∵平面,则.

3)建立空间直角坐标系,列出各点的坐标表示,求出平面的法向量为,又因平面,所以为平面的一条法向量,利用余弦公式求解即可得出二面角的余弦值.

解:(1)证明:连接,连接.

因为,分别为,的中点,所以的中位线

,又平面,平面,∴平面

2)在中,,点的中点,

,则平面.

又∵平面,则.

3)取中点,连接.

依题意可得为等边三角形,∴,

又因为底面,,平面

,

建立以为坐标原点,如图所示坐标系,则有:

,,,,,,

,,设平面的法向量为,

,∴

平面,所以为平面的一条法向量,且

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地举行水上运动会,如图,岸边有两点,,小船从点以千米/小时的速度沿方向匀速直线行驶,同一时刻运动员出发,经过小时与小船相遇.(水流速度忽略不计)

1)若,运动员从处出发游泳匀速直线追赶,为保证在1小时内(含1小时)能与小船相遇,试求运动员游泳速度的最小值;

2)若运动员先从处沿射线方向在岸边跑步匀速行进小时后,再游泳匀速直线追赶小船.已知运动员在岸边跑步的速度为4千米小时,在水中游泳的速度为2千米小时,试求小船在能与运动员相遇的条件下的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为,如果存在非零常数,对于任意,都有,则称函数似周期函数,非零常数为函数似周期.现有下面四个关于似周期函数的命题:

①如果似周期函数似周期,那么它是周期为2的周期函数;

②函数似周期函数

③如果函数似周期函数,那么

以上正确结论的个数是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,左顶点为,离心率为,点是椭圆上的动点,的面积的最大值为.

(1)求椭圆的方程;

(2)设经过点的直线与椭圆相交于不同的两点,线段的中垂线为.若直线与直线相交于点,与直线相交于点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划购买1台机器,该种机器使用三年后即被淘汰.在购进机器时,可以一次性额外购买几次维修服务,每次维修服务费用200元,另外实际维修一次还需向维修人员支付小费,小费每次50元.在机器使用期间,如果维修次数超过购机时购买的维修服务次数,则每维修一次需支付维修服务费用500元,无需支付小费.现需决策在购买机器时应同时一次性购买几次维修服务,为此搜集并整理了100台这种机器在三年使用期内的维修次数,得下面统计表:

维修次数

8

9

10

11

12

频数

10

20

30

30

10

表示1台机器在三年使用期内的维修次数,表示1台机器在维修上所需的费用(单位:元),表示购机的同时购买的维修服务次数.

1)若,求的函数解析式;

2)若要求维修次数不大于的频率不小于0.8,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知椭圆的离心率为,点分别为椭圆与坐标轴的交点,且.轴上定点的直线与椭圆交于两点,点为线段的中点.

1)求椭圆的方程;

2)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左、右焦点分别为,下顶点为,椭圆的离心率是的面积是.

1)求椭圆的标准方程.

2)直线与椭圆交于两点(异于点),若直线与直线的斜率之和为1,证明:直线恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的切线方程为.

(1)求实数的值;

(2)若有两个极值点,求的取值范围并证明.

查看答案和解析>>

同步练习册答案