精英家教网 > 高中数学 > 题目详情
3.设变量x,y满足约束条件$\left\{\begin{array}{l}{5x+2y-18≤0}\\{2x-y≥0}\\{x+y-3≥0}\end{array}\right.$,若直线kx-y+2=0经过该可行域,则当k取最大值时,z=kx+2y的最小值为(  )
A.1B.2C.0D.-1

分析 作出不等式组对应的平面区域,先利用直线的斜率的应用求出最大的k,然后利用平移即可得到结论.

解答 解:作出不等式组对应的平面区域如图,
由kx-y+2=0得y=kx+2,则直线过定点D(0,2),
由图象知当直线经过A时,k取得最大值,
由$\left\{\begin{array}{l}{5x+2y-18=0}\\{2x-y=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=4}\end{array}\right.$,
即A(2,4),此时4=2k+2,即2k=2,
解得k=1,解集k的最大值为1,
此时z=kx+2y=x+2y,
由z=x+2y,得$y=-\frac{1}{2}x+\frac{z}{2}$,平移直线$y=-\frac{1}{2}x+\frac{z}{2}$,
由平移可知当直线$y=-\frac{1}{2}x+\frac{z}{2}$经过点C时,直线$y=-\frac{1}{2}x+\frac{z}{2}$的截距最小,此时z取得最小值,
由$\left\{\begin{array}{l}{5x+2y-18=0}\\{x+y-3=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=-1}\end{array}\right.$,即C(4,-1),代入z=x+2y得z=4-2=2,
故选:B.

点评 本题主要考查线性规划的应用,利用直线的斜率以及图象平行求得目标函数的最大值和最小值,利用数形结合是解决线性规划问题中的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.在二项式${({x^2}-\frac{2}{x})^n}$的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设 椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),F1、F2是椭圆的左右焦点,以F1F2及椭圆短轴上的一个端点为顶点的三角形的面积为$\sqrt{3}$的正三角形.
(1)求椭圆方程;
(2)设C2是以F1F2为直径的圆,过圆C2上一点P作圆C2的切线,交椭圆于AB点,求|AB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\left\{\begin{array}{l}{2^x},\;x>0\;\\-{2^{-x}},\;x<0\;\end{array}\right.$那么该函数是(  )
A.奇函数,且在定义域内单调递减
B.奇函数,且在定义域内单调递增
C.非奇非偶函数,且在(0,+∞)上单调递增
D.偶函数,且在(0,+∞)上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,角A,B,C的对边分别是a,b,c,已知c=5,$B=\frac{2π}{3}$,△ABC的面积是$\frac{{15\sqrt{3}}}{4}$.
(Ⅰ)求b的值;
(Ⅱ)求cos2A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.证明:$\frac{2}{{3}^{1}-1}$+$\frac{2}{{3}^{2}-1}$+…+$\frac{2}{{3}^{n}-1}$<$\frac{3}{2}$(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的前n项和Sn=10n-n2(n∈N*),又bn=|an|(n∈N*).
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.把数列{2n+1}的项依次按以下规则排在括号内:第一个括号一个数,第二个括号两个数,第三个括号三个数,第四个括号四个数;第五个括号一个数,第六个括号两个数,…,依此类推,分别为:
(3),(5,7),(9,11,13),(15,17,19,21),
(23),(25,27),(29,31,33),(35,37,39,41),
(43),(45,47),…,
则(1)第104个括号内各数之和为2072.
(2)奇数2015在第404个括号内.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,梯形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=2AB=4,E,F分别在线段BC,AD上,EF∥AB.将四边形ABEF沿EF折起,连接AD,AC.

(Ⅰ)若BE=3,在线段AD上一点取一点P,使AP=$\frac{1}{2}$PD,求证:CP∥平面ABEF;
(Ⅱ)若平面ABEF⊥平面EFDC,且线段FA,FC,FD的长成等比数列,求二面角E-AC-F的大小.

查看答案和解析>>

同步练习册答案