精英家教网 > 高中数学 > 题目详情
15.已知数列{an}的前n项和Sn=10n-n2(n∈N*),又bn=|an|(n∈N*).
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Tn

分析 (1)数列{an}的前n项和Sn=10n-n2(n∈N*),当n=1时,a1=S1=9,当n≥2时,an=Sn-Sn-1,即可得出.
(2)由an=11-2n≥0,解得n≤5.可得bn=|an|=$\left\{\begin{array}{l}{{a}_{n},n≤5}\\{-{a}_{n},n≥6}\end{array}\right.$.当n≤5时,Tn=Sn.当n≥6时,Tn=2S5-Sn,即可得出.

解答 解:(1)∵数列{an}的前n项和Sn=10n-n2(n∈N*),
∴当n=1时,a1=S1=9,当n≥2时,an=Sn-Sn-1=10n-n2-[10(n-1)-(n-1)2]=11-2n.
当n=1时上式也成立,
∴an=11-2n.
(2)由an=11-2n≥0,解得n≤5.
∴bn=|an|=$\left\{\begin{array}{l}{{a}_{n},n≤5}\\{-{a}_{n},n≥6}\end{array}\right.$.
∴当n≤5时,Tn=Sn=10n-n2
当n≥6时,Tn=2S5-Sn
=2×(10×5-52)-(10n-n2
=n2-10n+50.
∴Tn=$\left\{\begin{array}{l}{10n-{n}^{2},n≤5}\\{{n}^{2}-10n+50,n≥6}\end{array}\right.$.

点评 本题考查了等差数列的通项公式及其前n项和公式、递推式的应用、含绝对值数列的求和,考查了分类讨论思想方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)的图象如图所示,则f(x)的解析式可能是(  )
A.f(x)=$\frac{1}{2x-1}$-x3B.f(x)=$\frac{1}{2x-1}$+x3C.f(x)=$\frac{1}{2x+1}$-x3D.f(x)=$\frac{1}{2x+1}$+x3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,在矩形ABCD中,AB=1,AD=2,PA⊥平面ABCD,且PA=1,E,Q分别为AB,BC的中点,F在边PD上,$\overrightarrow{PF}=λ\overrightarrow{PD}$,λ∈(0,1).
(1)当λ=$\frac{1}{4}$时,求证:AQ⊥EF;
(2)若平面PAQ与平面EFQ所成锐二面角的大小为60°,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设变量x,y满足约束条件$\left\{\begin{array}{l}{5x+2y-18≤0}\\{2x-y≥0}\\{x+y-3≥0}\end{array}\right.$,若直线kx-y+2=0经过该可行域,则当k取最大值时,z=kx+2y的最小值为(  )
A.1B.2C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.为备战冬奥会短道速滑比赛,国家体育总局从四支较强的队中选出18人组成短道速滑国家队集训队员,队员来源人数如下表:
队别北京黑龙江辽宁八一
人数4635
(Ⅰ)从这18名队员中随机选出两名,求两人来自同一支队的概率;
(Ⅱ)若要求选出两位队员当正副队长,设其中来自北京队的人数为ξ,求随机变量ξ的分布列及数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在正方体ABCD-A1B1C1D1中,其棱长为a.
(1)求证:BD1⊥面AB1C;
(2)求点B到面AB1C的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知在△ABC中,若0<tanAtanB<1,则此三角形是钝角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若α、β是两个相交平面,则在下列命题中,真命题的序号为(  )
①若直线m⊥α,则在平面β内,一定不存在与直线m平行的直线.
②若直线m⊥α,则在平面β内,一定存在无数条直线与直线m垂直.
③若直线m?α,则在平面β内,不一定存在与直线m垂直的直线.
④若直线m?α,则在平面β内,一定存在与直线m垂直的直线.
A.①③B.②③C.②④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.动点P在椭圆x2+a(y-1)2=a(a>0)上移动时,求连结原点O和点P所得线段长的最大值.

查看答案和解析>>

同步练习册答案