【题目】如图所示,正方形上连接等腰直角三角形,直角三角形上再连接正方形……如此无限重复下去,设正方形面积为
,三角形面积为
.当第一个正方形的边长为2时,则这些正方形和三角形的面积的总和为______.
![]()
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px过点P(1,1).过点(0,
)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.
(Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程;
(Ⅱ)求证:A为线段BM的中点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
在平面直角坐标系中,N为圆C:
上的一动点,点D(1,0),点M是DN的中点,点P在线段CN上,且
.
(Ⅰ)求动点P表示的曲线E的方程;
(Ⅱ)若曲线E与x轴的交点为
,当动点P与A,B不重合时,设直线
与
的斜率分别为
,证明:
为定值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年9~12月某市邮政快递业务量完成件数较2017年9~12月同比增长25%,该市2017年9~12月邮政快递业务量柱形图及2018年9~12月邮政快递业务量结构扇形图如图所示,根据统计图,给出下列结论:
![]()
![]()
①2018年9~12月,该市邮政快递业务量完成件数约1500万件;
②2018年9~12月,该市邮政快递同城业务量完成件数与2017年9~12月相比有所减少;
③2018年9~12月,该市邮政快递国际及港澳台业务量同比增长超过75%,其中正确结论的个数为( )
A. 3
B. 2
C. 1
D. 0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知无穷等比数列
的首项、公比均为
.
(1)试求无穷等比子数列
各项的和;
(2)是否存在数列
的一个无穷等比子数列,使得它各项的和为
?若存在,求出所有满足条件的子数列的通项公式;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆
的离心率是
,过点
做斜率为
的直线
,椭圆
与直线
交于
两点,当直线
垂直于
轴时
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)当
变化时,在
轴上是否存在点
,使得
是以
为底的等腰三角形,若存在求出
的取值范围,若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的长轴长为4,离心率为
.
(1)求椭圆
的标准方程;
(2)过
作动直线
交椭圆
于
两点,
为平面上一点,直线
的斜率分别为
,且满足
,问
点是否在某定直线上运动,若存在,求出该直线方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知从
个球(其中
个白球,1个黑球)的口袋中取出
个球(
,![]()
),共有
种取法,在这
种取法中,可以分成两类:一类是取出的
个球全部为白球,另一类是取出1个黑球和
个白球,共有
种取法,即有等式![]()
成立,试根据上述思想,化简下列式子:
________(
,
).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com