精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,且经过点.

求椭圆的标准方程

为椭圆的中线,点,过点的动直线交椭圆于另一点,直线上的点满足,求直线的交点的轨迹方程.

【答案】

【解析】

(1)利用椭圆C:的离心率为,且经过点M(2,0),可求椭圆的几何量,从而可求椭圆方程;

(2)直线方程与椭圆方程联立,利用韦达定理,求得B点坐标,结合求出C的坐标,写出BD、OC的直线方程,利用消参法求轨迹.

因为椭圆的离心率,且,所以.

.故椭圆的标准方程为.

设直线的方程为(当存在时,由题意),代入,并整理得.

解得,于是,即.

,则.

由已知得,得,解得,于是.

两点的坐标可得直线的方程为.

又由点坐标可得直线的方程为.

两式相乘,消去参数.(如果只求出交点的坐标,此步不得分)

又当不存在时,四点重合,此时也满足题意.

故直线的交点的轨迹方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2018河南豫南九校高三下学期第一次联考设函数

I)当时, 恒成立,求的范围;

II)若处的切线为,且方程恰有两解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

①命题,则的否命题为,则

的必要不充分条件;

命题,使得的否定是:,均有

④命题,则的逆否命题为真命题

其中所有正确命题的序号是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校初中部共120名教师,高中部共180名教师,其性别比例如图所示,已知按分层抽样方法得到的工会代表中,高中部女教师有6人,则工会代表中男教师的总人数为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中,正确的是( )

A. 命题,则的逆命题是真命题

B. 命题存在的否定是:任意

C. 命题“pq”为真命题,则命题“p”和命题“q”均为真命题

D. 已知,则的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正整数数列中,由开始依次按如下规则将某些数染成蓝色:先染;再染两个偶数;再染后面的最临近的个连续奇数;再染后面的最临近的个连续偶数;再染此后最临近的个连续奇数.按此规则一直染下去,得到一蓝色子数列,则在这个蓝色子数列中,由开始的第个数是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动点从坐标原点出发沿着抛物线移动到点,则在移动过程中当为最大时,点的横坐标________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD

)证明AB⊥平面VAD

)求面VAD与面VDB所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点F与抛物线焦点重合,且椭圆的离心率为,过轴正半轴一点 且斜率为的直线交椭圆于两点.

(1)求椭圆的标准方程;

(2)是否存在实数使以线段为直径的圆经过点,若存在,求出实数的值;若不存在说明理由.

查看答案和解析>>

同步练习册答案