精英家教网 > 高中数学 > 题目详情
19.在△ABC中,角A,B,C所对的边分别为a,b,c,且sin2A+sin2C=sin2B-sinAsinC.
(1)求B的大小;
(2)设∠BAC的平分线AD交BC于D,AD=2$\sqrt{3}$,BD=1,求sin∠BAC的值.

分析 (1)已知等式利用正弦定理化简得到一个等式,再利用余弦定理求出cosB的值,即可求出B的度数;
(2)利用正弦定理可求sin∠BAD的值,利用倍角公式可求cos∠BAC,进而利用同角三角函数基本关系式可求sin∠BAC的值.

解答 (本小题满分12分)
解:(1)在△ABC中,∵sin2A+sin2C=sin2B-sinAsinC,
∴a2+c2=b2-ac,…(2分)
∴cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=-$\frac{ac}{2ac}$=-$\frac{1}{2}$,…(4分)
∵B∈(0,π),…(5分)
∴B=$\frac{2π}{3}$.…(6分)
(2)在△ABD中,由正弦定理:$\frac{AD}{sinB}=\frac{BD}{sin∠BAD}$,
∴sin∠BAD=$\frac{BDsinB}{AD}$=$\frac{1-\frac{\sqrt{3}}{2}}{2\sqrt{3}}$=$\frac{1}{4}$,…(8分)
∴cos∠BAC=cos2∠BAD=1-2sin2∠BAD=1-2×$\frac{1}{16}$=$\frac{7}{8}$,…(10分)
∴sin∠BAC=$\sqrt{1-co{s}^{2}∠BAC}$=$\sqrt{1-(\frac{7}{8})^{2}}$=$\frac{\sqrt{15}}{8}$.   …(12分)

点评 此题考查了正弦、余弦定理,同角三角函数间的基本关系,熟练掌握定理是解本题的关键,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.在棱长为1的正方体ABCD-A1B1C1D1中,E为AB1的中点,在面ABCD中取一点F,使EF+FC1最小,则最小值为$\frac{\sqrt{14}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知$\overrightarrow m$=(sinB,1-cosB),$\overrightarrow n$=(2,0),且$\overrightarrow m,\overrightarrow n$的夹角为$\frac{π}{3}$,其中A,B,C为△ABC的内角.
(1)求角B的大小;
(2)求sin2A+sin2C的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设x>0,y>0,x+y≤4,则$\frac{1}{x}$+$\frac{1}{y}$的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+(4a-3)x+3a,x<0}\\{lo{g}_{a}(x+1)+1,x≥0}\end{array}\right.$,(a>0,且a≠1)在R上单调递减.
(1)a的取值范围是[$\frac{1}{3}$,$\frac{3}{4}$];
(2)若关于x的方程|f(x)|=2-x恰好有两个不相等的实数解,则a的取值范围是[$\frac{1}{3}$,$\frac{2}{3}$)∪{$\frac{3}{4}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示的几何体中,四边形AA1B1B是边长为3的正方形,CC1=2,CC1∥AA1,这个几何体是棱柱吗?若是,指出是几棱柱.若不是棱柱,请你试用一个平面截去一部分,使剩余部分是一个棱长为2的三棱柱,并指出截去的几何体的特征,在立体图中画出截面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=sin2x+cos2x.
(1)求f(x) 的周期及单调递增区间.
(2)当x∈[-$\frac{π}{4}$,$\frac{π}{4}$]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某地区2009年至2015年农村居民家庭人均纯收入y(单位:千元)的数据如表:
年份2009201020112012201320142015
年份代号t1234567
人均纯收入y2.63.03.34.14.54.95.6
(1)求y关于t的线性回归方程;
(2)请利用(1)中的回归方程预测该地区2017年农村居民家庭人均纯收入.
附:回归直线公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{t}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知点A(-1,0),点B(1,0),直线AM,BM相交于点M,且直线AM的斜率与直线BM的斜率的商是3,则点M轨迹是直线x=-2(除去点(-2,0)).

查看答案和解析>>

同步练习册答案