分析 (1)利用辅助角公式即可转化为:y=$\sqrt{2}$sin(2x+$\frac{π}{4}$),利用周期公式可求最小正周期,由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,即可求得函数的单调递增区间.
(2)由已知可求2x+$\frac{π}{4}$的范围,利用正弦函数的图象和性质即可得解其值域.
解答 解:∵函数f(x)=sin2x+cos2x=$\sqrt{2}$sin(2x+$\frac{π}{4}$),
∴周期为T=$\frac{2π}{2}$=π.
∴由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,k∈Z,解得:kπ-$\frac{3π}{8}$≤x≤kπ+$\frac{π}{8}$,k∈Z,
∴f(x) 的单调递增区间为:(kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$),k∈Z,
(2)∵当x∈[-$\frac{π}{4}$,$\frac{π}{4}$]时,2x+$\frac{π}{4}$∈[-$\frac{π}{4}$,$\frac{3π}{4}$],
∴f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$)的值域为:[-1,$\sqrt{2}$].
点评 本题考查正弦函数的单调性及周期性与最值,着重考查正弦函数的图象与性质的灵活应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -14 | B. | 14 | C. | -42 | D. | 42 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,4] | B. | [2,5] | C. | [2,4] | D. | [1,5] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com