精英家教网 > 高中数学 > 题目详情
4.已知△ABC的周长为$\sqrt{3}+1$,且$sinA=\sqrt{3}sinC-sinB$.
(1)求边c的长;    
(2)若△ABC的面积为$\frac{1}{3}sinC$,求角C的度数.

分析 (1)根据已知周长表示出a+b+c=$\sqrt{3}+1$,已知等式利用正弦定理化简得到关系式,代入a+b+c=$\sqrt{3}+1$求出c的值,
(2)将得出关系式两边平方得到关系式a2+b2+2ab=3c2,利用三角形面积公式列出关系式,求出ab=$\frac{2}{3}$,利用余弦定理表示出cosC,利用特殊角的三角函数值即可得解.

解答 解:(1)∵$sinA=\sqrt{3}sinC-sinB$.
∴由正弦定理可得:a+b=$\sqrt{3}$c,
∵由△ABC周长为$\sqrt{3}+1$,
∴得到a+b+c=$\sqrt{3}+1$,即$\sqrt{3}$c+c=$\sqrt{3}$+1,
解得:c=1,
(2)已知等式sinA+sinB=$\sqrt{3}$sinC,利用正弦定理化简得:a+b=$\sqrt{3}$c,
两边平方得:a2+b2+2ab=3c2,①
∵S△ABC=$\frac{1}{3}$sinC,且S△ABC=$\frac{1}{2}$absinC,
∴ab=$\frac{2}{3}$,②
②代入①得:a2+b2+$\frac{4}{3}$=3c2,即a2+b2=3c2-$\frac{4}{3}$,
∴由余弦定理得:cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{1}{2}$,
∴C=$\frac{π}{3}$.

点评 此题考查了正弦、余弦定理,三角形面积公式,以及特殊角的三角函数值,熟练掌握定理是解本题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.集合A={a,b}则它的子集有(  )
A.5个B.4个C.3个D.2个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=ax2-2ax+c满足f(2017)<f(-2016),则满足f(m)≤f(0)的实数m的取值范围是(  )
A.(-∞,0]B.[0,2]C.(-∞,0]∪[2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若三棱台ABC-A1B1C1中,AB=6,A1B1=3,则三棱锥A-A1B1C1与三棱锥B1-ABC的体积之比是$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=a2x3+asinx+|x|+1,a为常数,若f(3)=5,则f(-3)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知三棱柱ABC-A1B1C1中,侧面AA1B1B⊥侧面BB1C1C,且侧面AA1B1B为正方形,侧面BB1C1C为菱形,∠BB1C1=60°.
(1)求证:B1C⊥AC1
(2)若点E是B1C的中点,点F是AA1的中点,求证:EF∥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=x2-2x+2,g(x)=ax2+bx+c,若这两个函数的图象关于(2,0)对称,则f(c)=(  )
A.122B.5C.26D.121

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设f(x)=ax2+bx+2是定义在[1+a,2]上的偶函数,则(-3)b+3${\;}^{-\sqrt{1-a}}$=(  )
A.$\frac{10}{9}$B.$\frac{1}{9}$C.10D.D、不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知点A(x1,f(x1)),B(x2,f(x2))是函数f(x)=2sin(ωx+φ)(ω>0,-2π<φ≤0)图象上的任意两点,且角φ的终边经过点P(1,-$\sqrt{3}$),已知|f(x1)-f(x2)|=4时,|x1-x2|的最小值为$\frac{π}{3}$.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递减区间;
(3)当x∈[0,$\frac{π}{3}$]时,不等式mf(x)+2m≥f(x)恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案