分析 (1)根据已知周长表示出a+b+c=$\sqrt{3}+1$,已知等式利用正弦定理化简得到关系式,代入a+b+c=$\sqrt{3}+1$求出c的值,
(2)将得出关系式两边平方得到关系式a2+b2+2ab=3c2,利用三角形面积公式列出关系式,求出ab=$\frac{2}{3}$,利用余弦定理表示出cosC,利用特殊角的三角函数值即可得解.
解答 解:(1)∵$sinA=\sqrt{3}sinC-sinB$.
∴由正弦定理可得:a+b=$\sqrt{3}$c,
∵由△ABC周长为$\sqrt{3}+1$,
∴得到a+b+c=$\sqrt{3}+1$,即$\sqrt{3}$c+c=$\sqrt{3}$+1,
解得:c=1,
(2)已知等式sinA+sinB=$\sqrt{3}$sinC,利用正弦定理化简得:a+b=$\sqrt{3}$c,
两边平方得:a2+b2+2ab=3c2,①
∵S△ABC=$\frac{1}{3}$sinC,且S△ABC=$\frac{1}{2}$absinC,
∴ab=$\frac{2}{3}$,②
②代入①得:a2+b2+$\frac{4}{3}$=3c2,即a2+b2=3c2-$\frac{4}{3}$,
∴由余弦定理得:cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{1}{2}$,
∴C=$\frac{π}{3}$.
点评 此题考查了正弦、余弦定理,三角形面积公式,以及特殊角的三角函数值,熟练掌握定理是解本题的关键,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0] | B. | [0,2] | C. | (-∞,0]∪[2,+∞) | D. | [2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 122 | B. | 5 | C. | 26 | D. | 121 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{10}{9}$ | B. | $\frac{1}{9}$ | C. | 10 | D. | D、不能确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com