精英家教网 > 高中数学 > 题目详情
19.如图,已知边长为6的菱形ABCD,∠ABC=120°,AC与BD相交于O,将菱形ABCD沿对角线AC折起,使BD=3$\sqrt{2}$.

(1)若M是BC的中点,求证:在三棱锥D-ABC中,直线OM与平面ABD平行;
(2)求二面角A-BD-O的余弦值;
(3)在三棱锥D-ABC中,设点N是BD上的一个动点,试确定N点的位置,使得CN=4$\sqrt{2}$.

分析 (1)推导出OM是△ABC的中位线,OM∥AB,由此能证明OM∥平面ABD.
(2)由题意知OB=OD=3,OB⊥OD,OB⊥OD,OB⊥AC,OD⊥AC,建立空间直角坐标系,利用向量法能求出二面角A-BD-O的余弦值.
(3)设N(x1,y1,z1),$\overrightarrow{BN}=λ\overrightarrow{BD}$,从而N(0,3λ,3-3λ),$\overrightarrow{CN}$=(3$\sqrt{3}$,3λ,3-3λ),由CN=4$\sqrt{2}$,能求出N点坐标.

解答 证明:(1)∵点O是菱形ABCD的对角线的交点,
∴O是AC的中点,
又点M是棱BC的中点,
∴OM是△ABC的中位线,OM∥AB,
∵OM?平面ABD,AB?平面ABD,
∴OM∥平面ABD.
解:(2)由题意知OB=OD=3,
∵BD=3$\sqrt{2}$,∴∠BOD=90°,OB⊥OD,
又∵BD=3$\sqrt{2}$,∴∠BOD=90°,OB⊥OD,
又∵菱形ABCD,∴OB⊥AC,OD⊥AC,
建立空间直角坐标系,则A(3$\sqrt{3}$,0,0),D(0,3,0),B(0,0,3),
∴$\overrightarrow{AB}$=(-3$\sqrt{3}$,0,3),$\overrightarrow{AD}$=(-3$\sqrt{3}$,3,0),
设平面ABD的法向量为$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{AB}•\overrightarrow{n}=-3\sqrt{3}x+3z=0}\\{\overrightarrow{AD}•\overrightarrow{n}=-3\sqrt{3}x+3y=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,$\sqrt{3},\sqrt{3}$),
∵AC⊥OB,AC⊥OD,OB∩OD=O,
∴AC⊥平面BOD,∴平面BOD的一个法向量$\overrightarrow{OA}$=(3$\sqrt{3}$,0,0),
cos<$\overrightarrow{OA},\overrightarrow{n}$>=$\frac{\overrightarrow{OA}•\overrightarrow{n}}{|\overrightarrow{OA}|•|\overrightarrow{n}|}$=$\frac{3\sqrt{3}}{3\sqrt{3}•\sqrt{7}}$=$\frac{\sqrt{7}}{7}$,
∵二面角A-BD-O的平面角是锐角,
∴二面角A-BD-O的余弦值为$\frac{\sqrt{7}}{7}$.
(3)设N(x1,y1,z1),∵N是线段BD上的一个动点,设$\overrightarrow{BN}=λ\overrightarrow{BD}$,
即(x1,y1,z1-3)=λ(0,3,-3),
∴x1=0,y1=3λ,z1=3-3λ,
∴N(0,3λ,3-3λ),$\overrightarrow{CN}$=(3$\sqrt{3}$,3λ,3-3λ),
∵CN=4$\sqrt{2}$,∴$\sqrt{27+9{λ}^{2}+(3-3λ)^{2}}$=4$\sqrt{2}$,整理,得:9λ2-9λ+2=0,
解得$λ=\frac{1}{3}$或$λ=\frac{2}{3}$,
∴N(0,1,2)或N(0,2,1).

点评 本题考查线面平行的证明,考查二面角的余弦值的求法,考查满足条件的点的坐标的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若点P(x,y)满足$\left\{\begin{array}{l}{2x-y+2≥0}\\{x-2y+1≤0}\\{x+y-2≤0}\end{array}\right.$上,则x2+(y+1)2的最大值和最小值的积是$\frac{81}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,网格纸上小正方形的边长为,粗实线和虚线画出的是某四面体的三视图,则该多面体的各条棱中,最长的棱的长度是(  )
A.2$\sqrt{5}$B.4$\sqrt{2}$C.6D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=x2-ax的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,记数列$\{\frac{1}{f(n)}\}$的前n项和为Sn,则S2016的值为(  )
A.$\frac{2015}{2016}$B.$\frac{2016}{2017}$C.$\frac{2014}{2015}$D.$\frac{2017}{2018}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,a:b:c=3:5:7,则此三角形中最大角为120°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.对某高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到如下折线图.下面关于这位同学的数学成绩的分析中,正确的共有(  )个
①该同学的数学成绩总的趋势是在逐步提高
②该同学在这连续九次测试中的最高分与最低分的差超过40分
③该同学的数学成绩与考试次号具有比较明显的线性相关性,且为正相关.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.一个几何体的三视图如图所示,其中正(主)视图和侧(左)视图是腰长为l的两个全等的等腰直角三角形,则该多面体的各条棱中最长棱的长度为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知E,F为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(0<a<b)的左右焦点,抛物线y2=2px(p>0)与双曲线有公共的焦点F,且与双曲线交于A,B不同两地两点,若|AF|=$\frac{4}{5}$|BE|,则双曲线的离心率为(  )
A.4-$\sqrt{7}$B.4-$\sqrt{3}$C.4+$\sqrt{3}$D.4+$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数y=f(x)图象上不同两点A(x1,y1),B(x2,y2)处的切线的斜率分别是kA,kB,规定K(A,B)=$\frac{{|{k_A}-{k_B}|}}{|AB|}$(|AB|为线段AB的长度)叫做曲线y=f(x)在点A与点B之间的“近似曲率”.设曲线y=$\frac{1}{x}$上两点A(a,$\frac{1}{a}$),B($\frac{1}{a}$,a)(a>0且a≠1),若m•K(A,B)>1恒成立,则实数m的取值范围是[$\frac{\sqrt{2}}{2}$,+∞).

查看答案和解析>>

同步练习册答案