精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
3
x3-x2+ax-a(a∈R).
(1)当a=-3时,求函数f(x)的极值;
(2)若a≤1,求函数的单调区间.
考点:利用导数研究函数的单调性,利用导数研究函数的极值
专题:导数的综合应用
分析:根据极值的定义,先对原函数求导数,然后令导函数等于0,求出方程的解,再根据极值的定义看在所求的点处能否取到极值,是极大值还是极小值.对于第二问,先对函数f(x)求导,然后求得f′(x)>0,和f′(x)<0的解,在这注意讨论a的取值.
解答: 解:(1)f(x)=
1
3
x3-x2-3x+3
,所以f′(x)=x2-2x-3.
∴解x2-2x-3=0,得:x=-1或x=3,所以
x∈(-∞,-1)时,f′(x)>0;
x∈(-1,3)时,f′(x)<0;
x∈(3,+∞)时,f′(x)>0.
根据极值的定义知:x=-1时,f(x)取到极大值f(-1)=
14
3
;x=3时,f(x)取到极小值f(3)=-6.
(2)f′(x)=x2-2x+a=(x-1)2+a-1,∵a≤1,∴a-1≤0
∴若a-1=0,即a=1时f′(x)≥0,所以(-∞,+∞)是f(x)的单调增区间;
若a<1时,解(x-1)2+a-1=0得:x=1±
1-a
,所以:
x∈(-∞,1-
1-a
)时,f′(x)>0,∴(-∞,1-
1-a
)是f(x)的单调增区间;
x∈(1-
1-a
,1+
1-a
)时,f′(x)<0,∴[1-
1-a
,1+
1-a
]是f(x)的单调减区间;
x∈(1+
1-a
,+∞)时,f′(x)>0,∴(1+
1-a
,+∞
)是f(x)的单调增区间.
点评:考查极值的定义,只要理解极值的定义,第一问不难解出.第二问要注意一下讨论a的取值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

菱形ABCD边长为2,∠BAD=60°,将ABCD沿对角线BD折叠,使得平面ABD⊥平面CBD,AE⊥平面ABD,且AE=
3

(1)求证:DE⊥AC;
(2)求证:直线BE上是否存在一点M,使得CM∥平面ADE,若存在,求点M的位置,不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a1=2,点(an,an+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3…
(1)证明数列{lg(1+an)}是等比数列
(2)设Tn=(1+a1)(1+a2)…(1+an),求Tn及数列{an}的通项
(3)记bn=
1
an
+
1
an+2
,设数列{bn}的前n项和Sn,证明
3
4
Sn
<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

有甲、乙、丙、丁、戊5位同学,求:
(1)5位同学站成一排,有多少种不同的方法?
(2)5位同学站成一排,要求甲乙必须相邻,丙丁不能相邻,有多少种不同的方法?
(3)将5位同学分配到三个班,每班至少一人,共有多少种不同的分配方法?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3-
3
2
(a+2)x2+6x+b在x=2处取得极值

(Ⅰ)求a的值及f(x)的单调区间
(Ⅱ)?x∈[0,3]使f(x)<b2,求b的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,若
AB
AC
=12,a=2,∠A=30°,求b,c(b<c).

查看答案和解析>>

科目:高中数学 来源: 题型:

1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
,写出n=1,2,3,4的值,归纳并猜想出结果,你能证明你的结论吗?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知P为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)右支上的一点,F1,F2分别为双曲线的左、右焦点,圆C为三角形PF1F2的内切圆,求圆C的圆心的横坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的偶函数f(x)满足f(x-4)=f(x),且在区间[0,2]上f(x)=x.若关于x的方程f(x)=logax有三个不同的根,则a的范围为
 

查看答案和解析>>

同步练习册答案