精英家教网 > 高中数学 > 题目详情
△ABC中,若
AB
AC
=12,a=2,∠A=30°,求b,c(b<c).
考点:平面向量数量积的运算
专题:平面向量及应用
分析:由条件利用两个向量的数量积的定义可得 bc=8
3
①,再由余弦定理可得即 (b+c)2=(4+2
3
)
2
②,由此求得b、c的值.
解答: 解:△ABC中,∵
AB
AC
=12,a=2,∠A=30°,∴bc•cos30°=12,即 bc=8
3
 ①.
再由余弦定理可得 a2=4=b2+c2-2bc•cos30°=(b+c)2-(2+
3
)bc=(b+c)2-24-16
3

即 (b+c)2=28+16
3
=(4+2
3
)
2
 ②.
由①②以及b<c,可得b=2
3
,c=4.
点评:本题主要考查两个向量的数量积的定义,余弦定理,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求适合下列条件的曲线的标准方程:
(1)椭圆的焦点在x轴上,长轴是20,短轴是10;
(2)双曲线的一个焦点是(0,13),离心率e=
13
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知|
a
|=3,
b
=(4,2),若
a
b
,求
a
的坐标;
(2)已知
a
=(2,3),
b
=(1,2),若
a
b
a
的夹角不为锐角,求λ的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱锥S-ABC中,△ABC是边长为8的正三角形,SA=SC=2
7
,二面角S-AC-B为60°
(1)求证:AC⊥SB;
(2)求三棱锥S-ABC的体积;
(3)求二面角S-BC-A的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-x2+ax-a(a∈R).
(1)当a=-3时,求函数f(x)的极值;
(2)若a≤1,求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,一块边长为10的正方形铁片,从它的四个角各剪去一个边长为x的小正方形,把剩下的铁片做成一个没有盖子的盒子,求当x是多少时,盒子的容积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(x,2),
b
=(x+n,2x-
3
2
),n∈N+,函数f(x)=
a
b
在[0,1]上的最小值与最大值的和为an,数列{bn}的前n项和Sn满足:Sn+4bn=n(n∈N+
(Ⅰ)求an
(Ⅱ)证明数列{bn-1}为等比数列,并求出bn的表达式;
(Ⅲ)令cn=-an•(bn-1),试问:在数列{cn}中,是否存在正整数k,使得对于任意的正整数n,都有cn≤ck成立?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{bn}是首项为1,公差为2的等差数列,数列{an}的前n项和Sn=nbn
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设cn=
1
an(2bn+3)
,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是一个公差不为0等差数列,且a2=2,并且a3,a6,a12成等比数列,则
1
a1a2
+
1
a2a3
+
1
a3a4
+…+
1
anan+1
=
 

查看答案和解析>>

同步练习册答案