精英家教网 > 高中数学 > 题目详情
已知以向量v=(1, )为方向向量的直线l过点(0, ),抛物线C(p>0)的顶点关于直线l的对称点在该抛物线上.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设AB是抛物线C上两个动点,过A作平行于x轴的直线m,直线OB与直线m交于点N,若(O为原点,AB异于原点),试求点N的轨迹方程.
,点N的轨迹方程为
解(Ⅰ)由题意可得直线l    ①
过原点垂直于l的直线方程为        ②
解①②得
∵抛物线的顶点关于直线l的对称点在该抛物线的准线上.

∴抛物线C的方程为
(Ⅱ)设
,得

解得                        ③
直线ON,即     ④
由③、④及得,
N的轨迹方程为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

经过原点作圆的割线,交圆于两点,求弦的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)已知点所成的比为2,是平面上一动点,且满足.(1)求点的轨迹对应的方程;(2) 已知点在曲线上,过点作曲线的两条弦,且直线的斜率满足,试推断:动直线有何变化规律,证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知两点M(1,)、N(-4,-),给出下列曲线方程:
①4x+2y-1="0," ②x2+y2="3," ③+y2="1," ④y2=1,在曲线上存在点P满足|MP|=|NP|的所有曲线方程是_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若抛物线的焦点与双曲线的右焦点重合,则的值为          

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)F1、F2分别是双曲线x2-y2=1的两个焦点,O为坐标原点,圆O是以F1F2为直径的圆,直线lykx+(b>0)与圆O相切,并与双曲线相交于A、B两点.(Ⅰ)根据条件求出bk满足的关系式;(Ⅱ)向量在向量方向的投影是p,当(×)p2=1时,求直线l的方程;(Ⅲ)当(×)p2=m且满足2≤m≤4时,求DAOB面积的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

垂直于x轴的直线交双曲线=1右支于M,N两点,A1,A2为双曲线的左右两个顶点,求直线A1M与A2N的交点P的轨迹方程,并指出轨迹的形状.

查看答案和解析>>

同步练习册答案