分析 函数f(x)=$\frac{x-2}{x-1}$=1-$\frac{1}{x-1}$(x∈[2,6])是增函数,利用定义法能进行证明,根据函数的单调性能求出最值.
解答 解:函数f(x)=$\frac{x-2}{x-1}$=1-$\frac{1}{x-1}$(x∈[2,6])是增函数.
证明如下:
在[2,6]内任取x1,x2,令x1<x2,
f(x1)-f(x2)=(1-$\frac{1}{{x}_{1}-1}$)-(1-$\frac{1}{{x}_{2}-1}$)=$\frac{1}{{x}_{2}-1}-\frac{1}{{x}_{1}-1}$,
∵x1,x2∈[2,6],x1<x2,
∴f(x1)-f(x2)=$\frac{1}{{x}_{2}-1}-\frac{1}{{x}_{1}-1}$<0,即f(x1)<f(x2),
∴函数f(x)=$\frac{x-2}{x-1}$(x∈[2,6])是增函数.
∴f(x)min=f(2)=0,$f(x)_{max}=f(6)=\frac{6-2}{6-1}$=$\frac{4}{5}$.
∴f(x)在[2,6]上的最小值为0,最大值为$\frac{4}{5}$.
点评 本题考查函数的单调性的判断与证明,考查最值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分 | ||
| C. | 充要条件 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{20}$ | B. | $\frac{1}{10}$ | C. | 10 | D. | 20 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | D1O∥平面A1BC1 | B. | D1O⊥平面MAC | ||
| C. | 异面直线BC1与AC所成的角为60° | D. | MO与底面所成角为90° |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com