精英家教网 > 高中数学 > 题目详情
1.如图,正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,M为棱BB1的中点,则下列结论中错误的是(  )
A.D1O∥平面A1BC1B.D1O⊥平面MAC
C.异面直线BC1与AC所成的角为60°D.MO与底面所成角为90°

分析 由线面平行的判定证明A正确;由线面垂直的判定说明B正确;由异面直线所成角的概念结合正方体的面对角线相等说明C正确;求出∠MOB为二面角M-AC-B的平面角,从而得到D错误.

解答 解:如图,
连接B1D1,交A1C1于N,则可证明OD1∥BN,
由OD1?面A1BC1,BN?面A1BC1,可得D1O∥面A1BC1,A正确;
由三垂线定理的逆定理可得OD1⊥AC,
设正方体棱长为2,可求得OM2=3,OD12=6,MD12=9,
则OD12+OM2=D1M2,有OD1⊥OM,由线面垂直的判定可得D1O⊥平面AMC,
B正确;
由正方体的面对角线相等得到△A1BC1为正三角形,即∠A1C1B=60°,
∴异面直线BC1与AC所成的角等于60°,C正确;
因为BO⊥AC,MO⊥AC,∴∠MOB为二面角M-AC-B的平面角,
显然MO与底面所成的角不是90°,故D不正确;
故选:D.

点评 本题考查了空间直线和平面的位置关系,考查了异面直线所成角的求法,训练了利用等积法求点到面的距离,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.利用单调性定义判断函数f(x)=$\frac{x-2}{x-1}$(x∈[2,6])是增函数还是减函数,并求出最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知复数z满足(2-i)z=5,则z=(  )
A.2+iB.2-iC.-2-iD.-2+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.点P(tan 2015°,cos 2015°)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\left\{\begin{array}{l}{lgx,x>0}\\{{3}^{x-1},x≤0}\end{array}\right.$,则f(f(1))=(  )
A.$\frac{1}{3}$B.3C.1D.$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)已知A(-2,-3),B(3,0),直线l过点P(-1,2),且与线段AB相交,求直线l的斜率K的取值范围;
(2)光线从点A(-3,4)射出,到x轴上的点B后,被x轴反射到y轴上的点C,又被y轴反射,这时反射光线恰好过点D(-1,6),求光线BC所在直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中,既是奇函数又增函数的为(  )
A.y=x+1B.y=-x2C.y=-$\frac{1}{x}$D.y=x|x|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若sin(x-$\frac{3}{4}$π)cos(x-$\frac{π}{4}$)=-$\frac{1}{4}$,则cos4x=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设$f(x)=\left\{{\begin{array}{l}{π,x>0}\\{1,x=0}\\{-π,x<0}\end{array}}\right.,g(x)=\left\{{\begin{array}{l}{1,x为有理数}\\{{{log}_{\frac{1}{2}}}π,x为无理数}\end{array}}\right.$,则f(g(π))的值为(  )
A.1B.πC.D.没有正确答案

查看答案和解析>>

同步练习册答案