精英家教网 > 高中数学 > 题目详情
6.(1)已知A(-2,-3),B(3,0),直线l过点P(-1,2),且与线段AB相交,求直线l的斜率K的取值范围;
(2)光线从点A(-3,4)射出,到x轴上的点B后,被x轴反射到y轴上的点C,又被y轴反射,这时反射光线恰好过点D(-1,6),求光线BC所在直线的斜率.

分析 (1)先根据A,B,P的坐标分别求得直线AP和BP的斜率,设L与线段AB交于M点,M由A出发向B移动,斜率越来越大,期间会出现AM平行y轴,此时无斜率.求得k的一个范围,过了这点M,斜率由-∞增大到直线BP的斜率K.求得k的另一个范围,最后综合可得答案
(2)先求点A关于x轴的对称点为A′,点D关于y轴的对称点为D′,直接连接A′D′的方程就是BC的方程

解答 解:(1)直线AP的斜率k=$\frac{-3-2}{-2+1}$=5
直线BP的斜率k=$\frac{0-2}{3+1}=-\frac{1}{2}$,
设L与线段AB交于M点,M由A出发向B移动,斜率越来越大,
在某点处会AM平行y轴,此时无斜率.即k≥5,
过了这点,斜率由-∞增大到直线BP的斜率-$\frac{1}{2}$.即k≤-$\frac{1}{2}$
直线l斜率取值范围为(-∞,-$\frac{1}{2}$]∪[5,+∞).
(2)点A关于x轴的对称点为
A′(-3,-4),
点D关于y轴的对称点为
D′(1,6),
由入射角等于反射角及对顶角相等可知A′、D′都在直线BC上,
∴BC的方程为5x-2y+7=0.

点评 本题主要考查了直线的斜率以及对称问题,解题的关键是利用了数形结合、转化思想,解题过程较为直观.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\sqrt{3}$sinωxcosωx+cos2ωx-$\frac{1}{2}$(ω>0),其最小正周期为$\frac{π}{2}$.
(1)求f(x)在区间[-$\frac{π}{8}$,$\frac{π}{4}}$]上的减区间;
(2)将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向右平移$\frac{π}{4}$个单位,得到函数g(x)的图象,若关于x的方程g(x)+k=0在区间[0,$\frac{π}{2}}$]上有且只有一个实数根,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知曲线y=$\frac{x^2}{4}$-lnx的一条切线的斜率为-$\frac{1}{2}$,则切点的横坐标为(  )
A.3B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,B=$\frac{π}{4}$,BC边上的高等于$\frac{1}{3}$BC,则cosA=-$\frac{\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,M为棱BB1的中点,则下列结论中错误的是(  )
A.D1O∥平面A1BC1B.D1O⊥平面MAC
C.异面直线BC1与AC所成的角为60°D.MO与底面所成角为90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且有(2+b)(sinA-sinB)=(c-b)sinC.
(Ⅰ)求角A的值;
(Ⅱ)求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.△ABC的内角A、B、C的对边分别为a、b、c,若sinA:sinB:sinC=7:8:13,则角C=120°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)=log${\;}_{\frac{1}{2}}$-x的零点在区间(n,n+1)(n∈N)内,则n=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=2x+5x的零点所在大致区间为(  )
A.(0,1)B.(1,2)C.(-1,0)D.(-2,-1)

查看答案和解析>>

同步练习册答案