分析 (Ⅰ)由条件利用正弦定理可得b2+c2-bc=4.再由余弦定理可得A的值.
(Ⅱ)利用正弦定理,三角形内角和定理,三角函数恒等变换的应用可得周长=$2+4sin(B+\frac{π}{6})$,由B的范围可求$\frac{π}{6}<B+\frac{π}{6}<\frac{5π}{6}$,利用正弦函数的图象和性质可求取值范围.
解答 解:(Ⅰ)(2+b)(sinA-sinB)=(c-b)sinC⇒(a+b)(a-b)=(c-b)c
化简得:b2+c2-a2=bc,
所以:$cosA=\frac{{{b^2}+{c^2}-{a^2}}}{2bc}=\frac{1}{2}$.
因为:A∈(0,π),
可得:A=$\frac{π}{3}$.
(Ⅱ)△ABC周长=a+b+c=2+2RsinB+2RsinC
=$2+\frac{a}{sinA}sinB+\frac{a}{sinB}sin(A+B)$=$2+\frac{{4\sqrt{3}}}{3}(sinB+sin({60°}+B))$
=$2+\frac{{4\sqrt{3}}}{3}(sinB+sin({60°}+B))$=$2+4sin(B+\frac{π}{6})$;
∵$0<B<\frac{2π}{3}$,
∴$\frac{π}{6}<B+\frac{π}{6}<\frac{5π}{6}$,$\frac{1}{2}<sin(B+\frac{π}{6})≤1$;
∴周长的取值范围是(4,6].
点评 本题主要考查了正弦定理,余弦定理,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了转化思想,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1或3 | B. | 1 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com