精英家教网 > 高中数学 > 题目详情
11.已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且有(2+b)(sinA-sinB)=(c-b)sinC.
(Ⅰ)求角A的值;
(Ⅱ)求△ABC周长的取值范围.

分析 (Ⅰ)由条件利用正弦定理可得b2+c2-bc=4.再由余弦定理可得A的值.
(Ⅱ)利用正弦定理,三角形内角和定理,三角函数恒等变换的应用可得周长=$2+4sin(B+\frac{π}{6})$,由B的范围可求$\frac{π}{6}<B+\frac{π}{6}<\frac{5π}{6}$,利用正弦函数的图象和性质可求取值范围.

解答 解:(Ⅰ)(2+b)(sinA-sinB)=(c-b)sinC⇒(a+b)(a-b)=(c-b)c
化简得:b2+c2-a2=bc,
所以:$cosA=\frac{{{b^2}+{c^2}-{a^2}}}{2bc}=\frac{1}{2}$.
因为:A∈(0,π),
可得:A=$\frac{π}{3}$.
(Ⅱ)△ABC周长=a+b+c=2+2RsinB+2RsinC
=$2+\frac{a}{sinA}sinB+\frac{a}{sinB}sin(A+B)$=$2+\frac{{4\sqrt{3}}}{3}(sinB+sin({60°}+B))$
=$2+\frac{{4\sqrt{3}}}{3}(sinB+sin({60°}+B))$=$2+4sin(B+\frac{π}{6})$;
∵$0<B<\frac{2π}{3}$,
∴$\frac{π}{6}<B+\frac{π}{6}<\frac{5π}{6}$,$\frac{1}{2}<sin(B+\frac{π}{6})≤1$;
∴周长的取值范围是(4,6].

点评 本题主要考查了正弦定理,余弦定理,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.四棱锥P-ABCD中,点P在平面ABCD内的射影H在棱AD上,PA⊥PD,底面ABCD是梯形,BC∥AD,AB⊥AD,且AB=BC=1,AD=2.
(1)求证:平面PAB⊥平面PAD;
(2)若直线AC与PD所成角为60°,求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设a=log48,b=log0.48,c=20.4,则(  )
A.b<c<aB.c<b<aC.c<a<bD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.幂函数f(x)=(m2-4m+4)x${\;}^{{m^2}-6m+8}}$在(0,+∞)为增函数,则m的值为(  )
A.1或3B.1C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)已知A(-2,-3),B(3,0),直线l过点P(-1,2),且与线段AB相交,求直线l的斜率K的取值范围;
(2)光线从点A(-3,4)射出,到x轴上的点B后,被x轴反射到y轴上的点C,又被y轴反射,这时反射光线恰好过点D(-1,6),求光线BC所在直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.数列{an}满足an+1+2=m(an+2)(an≠-2,m为常数),若a3,a4,a5,a6∈{-18,-6,-2,6,30},则a1=-3或126.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},是否存在a使得A∩B=B,若存在求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.过双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的右焦点作倾斜角为45°的弦AB.求:
(1)弦AB的中点C到右焦点F2的距离;
(2)弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知全集U=R,集合$A=\{\left.x\right|\frac{1}{2}≤{2^x}≤\left.4\right\}$,B={x|1<x<6}
(1)求A∩∁UB;
(2)已知C={x|a≤x≤a+1},若A∩C=C,求实数a的取值范围.

查看答案和解析>>

同步练习册答案