精英家教网 > 高中数学 > 题目详情
20.过双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的右焦点作倾斜角为45°的弦AB.求:
(1)弦AB的中点C到右焦点F2的距离;
(2)弦AB的长.

分析 (1)求出直线AB的方程,代入双曲线方程,求出C的坐标,即可求弦AB的中点C到右焦点F2的距离;
(2)利用弦长公式求弦AB的长.

解答 解:(1)由已知,AB的方程为y=x-5,
将其代入$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1,得7x2+90x-369=0.设A(x1,y1),B(x2,y2),
则x1+x2=-$\frac{90}{7}$,∴$\frac{{x}_{1}+{x}_{2}}{2}$=-$\frac{45}{7}$,解得$\frac{{y}_{1}+{y}_{2}}{2}$=-$\frac{80}{7}$
AB的中点C的坐标为(-$\frac{45}{7}$,-$\frac{80}{7}$).
于是|CF|=$\sqrt{(-\frac{45}{7}-5)^{2}+(-\frac{80}{7}-0)^{2}}$=$\frac{80\sqrt{2}}{7}$;
(2)弦AB的长=$\sqrt{1+1}•\sqrt{(-\frac{90}{7})^{2}+4×\frac{369}{7}}$=$\frac{224}{7}$.

点评 本题考查双曲线的方程与性质,考查直线与双曲线的位置关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥CD,AB⊥BC,AB=PA=PD=3,CD=1,BC=4,E为线段AB上一点,AE=$\frac{1}{2}$BE,F为PD的中点.
(1)证明:PE∥平面ACF;
(2)求二面角A-CF-B的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且有(2+b)(sinA-sinB)=(c-b)sinC.
(Ⅰ)求角A的值;
(Ⅱ)求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若抛物线y2=4x上的点P到焦点的距离是10,则P的坐标(  )
A.(9,6)B.(9,6)或(9,-6)C.(9,-6)D.(6,-6)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)=log${\;}_{\frac{1}{2}}$-x的零点在区间(n,n+1)(n∈N)内,则n=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\left\{\begin{array}{l}{x+2(x≤-1)}\\{{x}^{2}(-1<x<2)}\\{2x(x≥2)}\end{array}\right.$
(1)求f(2),f($\frac{1}{2}$),f[f(-1)];
(2)若f(a)=3,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知关于x的不等式|x+1|+|x-1|<4的解集为M.
(1)设Z是整数集,求Z∩M;
(2)当a,b∈M时,证明:2|a+b|<|4+ab|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=|x-2|.
(Ⅰ)求不等式f(x+1)+f(x+3)>2的解集M;
(Ⅱ)若a∈M,|b|<2,求证:$f(ab)<|a|•f(\frac{b}{a})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知等比数列{an}中,a1,a99为方程x2-10x+4=0的两根,则a20•a50•a80的值为(  )
A.8B.-8C.±8D.±64

查看答案和解析>>

同步练习册答案