精英家教网 > 高中数学 > 题目详情
14.5颗骰子同时掷出,共掷100次则至少一次出现全为6点的概率为(  )
A.[1-($\frac{5}{6}$)5]100B.[1-($\frac{5}{6}$)100]5C.1-[1-($\frac{1}{6}$)100]5D.1-[1-($\frac{1}{6}$)5]100

分析 利用相互独立事件的概率乘法公式,所求的事件的概率与它的对立事件的概率之间的关系,求得结果.

解答 解:5颗骰子同时掷出,没有全部出现6点的概率是1-${(\frac{1}{6})}^{5}$,
共掷100次,至少一次出现全为6点的概率是1-${[1{-(\frac{1}{6})}^{5}]}^{100}$,
故选:D.

点评 本题主要考查相互独立事件的概率乘法公式,所求的事件的概率与它的对立事件的概率之间的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.对任意的θ∈(0,$\frac{π}{2}}$),不等式$\frac{1}{{{{sin}^2}θ}}$+$\frac{4}{{{{cos}^2}θ}}$≥|2x-1|恒成立,则实数x的取值范围是[-4,5].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=2sin(2x+$\frac{π}{4}$)的周期、振幅、初相分别是(  )
A.$\frac{π}{4}$,2,$\frac{π}{4}$B.π,-2,-$\frac{π}{4}$C.π,2,$\frac{π}{4}$D.2π,2,$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.(3-4i)(2+i)=10-5i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.己知a是正实数,函数y=f(x)=2ax2+2x-3-a在区间[-1,1]上有零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知定义在R上的函数f(x)的导函数为f′(x),若对任意的实数x,f′(x)>$\frac{1}{2}$恒成立,且f(3)=$\frac{9}{2}$,则不等式f(x2-2x)<$\frac{1}{2}$(x2-2x)+3的解集为(-1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$是夹角为60°的两个单位向量,$\overrightarrow{c}$=$\overrightarrow{a}$$+λ\overrightarrow{b}$,且$\overrightarrow{c}$$⊥\overrightarrow{b}$.
(1)求实数λ的值;
(2)求向量$\overrightarrow{c}$的模|$\overrightarrow{c}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=x2+x-1,求f(2x-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知等差数列{an}的首项a1=1,且公差d>0,它的第2项、第5项、第14项分别是等比数列{bn}的第2、3、4项.
(1)求数列{an}与{bn}的通项公式;
(2)令dn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{dn}的前n项和Sn
(3)设数列{cn}对任意正整数n均有$\frac{{c}_{1}}{{b}_{1}}$+$\frac{{c}_{2}}{{b}_{2}}$+…+$\frac{{c}_{n}}{{b}_{n}}$=an+1成立,求a1c1+a2c2+…+ancn的值.

查看答案和解析>>

同步练习册答案