【题目】在平面直角坐标系xOy中,已知过点的圆和直线相切,且圆心在直线上.
(1)求圆的标准方程;
(2)点,圆上是否存在点,使若存在,求出点的坐标;若不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】已知函数是定义在上的偶函数,当时,.现已画出函数在轴右侧的图象,如图所示.
(1)画出函数在轴左侧的图象,根据图象写出函数在上的单调区间;
(2)求函数在上的解析式;
(3)解不等式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设、分别是椭圆的左、右焦点.
(1)若是该椭圆上的一个动点,求的最大值与最小值.
(2)是否存在过点的直线与椭圆交于不同的两点,使得?若存在,求直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知对任意平面向量,把绕其起点沿逆时针方向旋转角得到向量,叫做把点绕点逆时针方向旋转角得到点.
(1)已知平面内点,点.把点绕点沿顺时针方向旋转后得到点,求点的坐标;
(2)设平面内曲线上的每一点绕坐标原点沿逆时针方向旋转后得到的点的轨迹是曲线,求原来曲线的方程,并求曲线上的点到原点距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】手机作为客户端越来越为人们所青睐,通过手机实现衣食住行消费已经成为一种主要的消费方式.在某市,随机调查了200名顾客购物时使用手机支付的情况,得到如下的2×2列联表,已知从使用手机支付的人群中随机抽取1人,抽到青年的概率为.
(I)根据已知条件完成2×2列联表,并根据此资料判断是否有99.5%的把握认为“市场购物用手机支付与年龄有关”?
2×2列联表:
青年 | 中老年 | 合计 | |
使用手机支付 | 120 | ||
不使用手机支付 | 48 | ||
合计 | 200 |
(Ⅱ)现采用分层抽样的方法从这200名顾客中按照“使用手机支付”和“不使用手机支付”抽取一个容量为10的样本,再从中随机抽取3人,求这三人中“使用手机支付”的人数的分布列及期望.
附:
0.05 | 0.025 | 0.010 | 0.005 | |
3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆过点,离心率为,为坐标原点.
(1)求椭圆的标准方程;
(2)设,,为椭圆上的三点,与交于点,且,当的中点恰为点时,判断的面积是否为常数,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com