分析 求出抛物线的焦点坐标,双曲线的渐近线方程,由点到直线的距离公式,可得a,b的关系,再由离心率公式,计算即可得到.
解答 解:抛物线y2=4x的焦点为(1,0),
双曲线C2:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一条渐近线为bx+ay=0,
则焦点到渐近线的距离d=$\frac{b}{\sqrt{{a}^{2}+{b}^{2}}}=\frac{\sqrt{3}}{3}$,
即有b2=$\frac{1}{2}$a2,
则c2=$\frac{3}{2}$a2,
即有双曲线的离心率为:$\frac{\sqrt{6}}{2}$.
故答案为:$\frac{\sqrt{6}}{2}$.
点评 本题考查抛物线和双曲线的方程和性质,考查渐近线方程的运用,考查点到直线的距离公式,考查离心率的求法,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $x=±\frac{{\sqrt{3}}}{3}y$ | B. | $y=±\frac{{\sqrt{3}}}{3}x$ | C. | $y=±\frac{{\sqrt{3}}}{2}x$ | D. | $x=±\frac{{\sqrt{3}}}{2}y$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | -1 | C. | 0 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$尺 | B. | $\frac{2}{3}$尺 | C. | 1尺 | D. | $\frac{3}{2}$尺 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 1 | C. | 0 | D. | -1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com