精英家教网 > 高中数学 > 题目详情
数列{an}的前n项和Sn,a1=1,an+1=2Sn
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log3an,求数列{bn}的前n项和Tn
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由a1=1,an+1=2Sn,求出a2,an+1=2Sn,an=2Sn-1,n≥2,两式相减,得到{an}是从第二面开始起的等比数列,由此能求出数列{an}的通项公式.
(Ⅱ)由(Ⅰ)知:当n=1时,b1=log31=0,当n≥2时,bn=log3(2•3n-2)=log32+n-2,由此利用分组求和法能求出数列{bn}的前n项和Tn
解答: 解:(Ⅰ)∵a1=1,an+1=2Sn
∴a2=2S1=2a1=2,
an+1=2Sn,an=2Sn-1,n≥2,
∴an+1=3an,n≥2,
∴{an}是从第二面开始起的等比数列,
且公比q=
an+1
an
=3

an=
1,n=1
2•3n-2,n≥2

(Ⅱ)当n=1时,b1=log31=0,
当n≥2时,bn=log3(2•3n-2)=log32+n-2,
∴当n=1时,T1=0,
当n≥2时,Tn=(n-1)log32+
(n-1)(n+2)
2
-2(n-1),
Tn=(n-1)log32+
(n-1)(n-2)
2

令n=1,T1=0满足,
Tn=(n-1)log32+
(n-1)(n-2)
2
点评:本题考查数列的通项公式和前n项和的求法,是中档题,解题时要认真审题,注意分组求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某学校有教师160人,其中高级、中级和初级职称的教师分别有32人、64人和64人.为了了解教师的身体状况,用分层抽样方法抽取了一个容量为n的样本.若所抽取的样本中中级职称教师有16人,则n的值为(  )
A、32B、36C、38D、40

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b为正实数,现有下列命题:
①若a2-b2=1,则a-b<1;
②若
1
b
-
1
a
=1
,则a-b<1;
③若|
a
-
b
|=1
,则|a-b|<1;
④若|a3-b3|=1,则|a-b|<1.
其中真命题的个数有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

指出下列集合之间的关系
(1)集合A={x|x=2k+1,k∈Z},集合B={x|x=4k±1,k∈Z};
(2)集合A={x|x=2m,m∈Z},集合B={x|x=4n±2,n∈Z};
(3)集合A={x|x=
2
,k∈Z},集合B={x|x=kπ或x=kπ+
π
2
,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:

求曲线y=2x-x2,y=2x2-4x所围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,-
3
)
b
=(sinx,cosx),f(x)=
a
b

(Ⅰ)若f(θ)=0,求
2cos2
θ
2
-sinθ-1
2
sin(θ+
π
4
)
的值;
(Ⅱ)当x∈[0,π]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

一箱里有10件产品,其中3件次品,现从中任意抽取4件产品检查.
(1)求恰有1件次品的概率;
(2)求至少有1件次品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-(2a-1)lnx+b
(1)若f(x)在x=1处的切线方程为y=x,求实数a,b的值;
(2)当a>
1
2
时,研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,若输出的结果是5,则判断框内m的取值范围是
 

查看答案和解析>>

同步练习册答案