【题目】在多面体中,四边形是正方形,平面,,,为的中点.
(1)求证:;
(2)求平面与平面所成角的正弦值.
科目:高中数学 来源: 题型:
【题目】已知函数.
(Ⅰ)若函数,求函数的单调区间;
(Ⅱ)设直线l为函数的图象上一点处的切线,证明:在区间上存在唯一的,使得直线l与曲线相切并求出此时n的值.(参考数据:)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,过点作轴的垂线交函数图象于点,以为切点作函数图象的切线交轴于点,再过作轴的垂线交函数图象于点,,以此类推得点,记的横坐标为,.
(1)证明数列为等比数列并求出通项公式;
(2)设直线与函数的图象相交于点,记(其中为坐标原点),求数列的前项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,().
(1)若曲线在处的切线也是曲线的切线,求的值;
(2)记,设是函数的两个极值点,且.
① 若恒成立,求实数的取值范围;
② 判断函数的零点个数,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中曲线的参数方程为(为参数),以为极点,轴的正半轴为极轴,建立极坐标系,直线的极坐标方程为.
(1)求曲线的普通方程以及直线的直角坐标方程;
(2)将曲线向左平移2个单位,再将曲线上的所有点的横坐标缩短为原来的,得到曲线,求曲线上的点到直线的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校在圆心角为直角,半径为的扇形区域内进行野外生存训练.如图所示,在相距的,两个位置分别为300,100名学生,在道路上设置集合地点,要求所有学生沿最短路径到点集合,记所有学生进行的总路程为.
(1)设,写出关于的函数表达式;
(2)当最小时,集合地点离点多远?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:从数列{an}中抽取m(m∈N,m≥3)项按其在{an}中的次序排列形成一个新数列{bn},则称{bn}为{an}的子数列;若{bn}成等差(或等比),则称{bn}为{an}的等差(或等比)子数列.
(1)记数列{an}的前n项和为Sn,已知.
①求数列{an}的通项公式;
②数列{an}是否存在等差子数列,若存在,求出等差子数列;若不存在,请说明理由.
(2)已知数列{an}的通项公式为an=n+a(a∈Q+),证明:{an}存在等比子数列.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com