精英家教网 > 高中数学 > 题目详情

【题目】在多面体中,四边形是正方形,平面的中点.

1)求证:

2)求平面与平面所成角的正弦值.

【答案】(1)证明见解析(2)

【解析】

(1)首先证明,∴平面.即可得到平面.

(2)以为坐标原点,所在的直线分别为轴、轴、轴建立空间直角坐标系,分别求出平面和平面的法向量,带入公式求解即可.

(1)∵平面平面,∴.

又∵四边形是正方形,∴.

,∴平面.

平面,∴.

又∵的中点,∴.

,∴平面.

平面,∴.

(2)∵平面,∴平面.

为坐标原点,所在的直线分别为轴、轴、轴建立空间直角坐标系.

如图所示:

.

.

为平面的法向量,

,得

,则.

由题意知为平面的一个法向量,

∴平面与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的单调区间和极值;

2)若方程有三个解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且.

1)求函数的极值点;

2)当时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若函数,求函数的单调区间;

(Ⅱ)设直线l为函数的图象上一点处的切线,证明:在区间上存在唯一的,使得直线l与曲线相切并求出此时n的值.(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,过点轴的垂线交函数图象于点,以为切点作函数图象的切线交轴于点,再过轴的垂线交函数图象于点,以此类推得点,记的横坐标为

1)证明数列为等比数列并求出通项公式;

2)设直线与函数的图象相交于点,记(其中为坐标原点),求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数().

1)若曲线处的切线也是曲线的切线,求的值;

2)记,设是函数的两个极值点,且.

恒成立,求实数的取值范围;

判断函数的零点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中曲线的参数方程为为参数),以为极点,轴的正半轴为极轴,建立极坐标系,直线的极坐标方程为.

1)求曲线的普通方程以及直线的直角坐标方程;

2)将曲线向左平移2个单位,再将曲线上的所有点的横坐标缩短为原来的,得到曲线,求曲线上的点到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校在圆心角为直角,半径为的扇形区域内进行野外生存训练.如图所示,在相距两个位置分别为300,100名学生,在道路上设置集合地点,要求所有学生沿最短路径到点集合,记所有学生进行的总路程为.

(1)设,写出关于的函数表达式;

(2)当最小时,集合地点离点多远?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:从数列{an}中抽取mmNm≥3)项按其在{an}中的次序排列形成一个新数列{bn},则称{bn}{an}的子数列;若{bn}成等差(或等比),则称{bn}{an}的等差(或等比)子数列.

1)记数列{an}的前n项和为Sn,已知

①求数列{an}的通项公式;

②数列{an}是否存在等差子数列,若存在,求出等差子数列;若不存在,请说明理由.

2)已知数列{an}的通项公式为ann+aaQ+),证明:{an}存在等比子数列.

查看答案和解析>>

同步练习册答案