精英家教网 > 高中数学 > 题目详情
17.点A(sinα,cosα)在第二象限,则角α在直角坐标平面上位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 通过三角函数的符号,判断角所在象限即可.

解答 解:点A(sinα,cosα)在第二象限,
可得sinα<0,cosα>0,
角α在直角坐标平面上位于:第四象限.
故选:D.

点评 本题考查三角函数符号以及角所在象限的判断,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.△ABC中,sinA:sinB:sinC=2:$\sqrt{6}$:($\sqrt{3}$+1),则三角形的最小内角是(  )
A.60°B.45°C.30°D.以上答案都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.sin$\frac{23π}{6}$=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.-$\frac{1}{2}$D.-$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若向量$\overrightarrow{AB}$=(3,-1),$\overrightarrow{n}$=(2,1),且$\overrightarrow{n}$•$\overrightarrow{AC}$=7,那么$\overrightarrow{n}$•$\overrightarrow{BC}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=sin(2x+$\frac{π}{3}$)+sin(2x-$\frac{π}{3}$)+2cos2x-1,x∈R.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:
喜欢甜品不喜欢甜品合计
南方学生602080
北方学生101020
合计7030100
(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2>k00.100.05 
0.01
0.005
k02.7063.841 
6.635
7.879

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.对于函数f(x),若f(x0)=x0,则称x0为函数f(x)的“不动点”:若f(f(x0))=x0,则称x0为f(x)的“稳定点”,如果函数f(x)=ax2+1(a∈R)的稳定点恰是它的不动点,那么a的取值范围为(  )
A.$(-∞,\frac{1}{4}]$B.$(-\frac{3}{4},+∞)$C.$[-\frac{3}{4},\frac{1}{4}]$D.$(-1,\frac{1}{4}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2+ax+b-2,a,b∈R.
(1)当|f(x)|≤$\frac{1}{2}$对x∈[1,3]恒成立时,求a,b的值;
(2)当f(x)在区间[1,3]上有两个不同零点时,求a+2b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.一个几何体的三视图如图,则它的表面积为4a2+(1+$\sqrt{2}$)πa2,体积为a3+$\frac{1}{3}{πa}^{3}$.

查看答案和解析>>

同步练习册答案