精英家教网 > 高中数学 > 题目详情
已知:等差数列{an}中,a4=14,a7=23.
(1)求an
(2)将{an}中的第2项,第4项,…,第2n项按原来的顺序排成一个新数列,求此数列的前n项和Gn
(1)设数列公差为d,
由a4=14,a7=23,
∴d=
1
3
(a7-a4)=3,
∴an=a4+(n-4)d=3n+2;
(2)Gn=a2+a4+a8+…+a2n
=(3×2+2)+(3×4+2)+(3×8+2)+…+(3×2n+2)
=3×(2+4+8+…+2n)+2n
=3×
2×(1-2n)
1-2
+2n
=6×(2n-1)+2n.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知二次函数y=f(x)的图象经过坐标原点,其导函数为f′(x)=6x-2,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
3
anan+1
,Tn是数列{bn}的前n项和,求使得Tn
m
20
对所有n∈N*都成立的最小正整数m.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

等差数列{an}中,a1=3,公差d=2,Sn为前n项和,求
1
S1
+
1
S2
+…+
1
Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}满足Sn=n2an(n∈N*),其中Sn是{an}的前n项和,且a1=1,求
(1)求an的表达式;
(2)求Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设数列{an}的前n项和为Sn=2an-2n
(Ⅰ)求a1,a2
(Ⅱ)设cn=an+1-2an,证明:数列{cn}是等比数列
(Ⅲ)求数列{
n+1
2cn
}
的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知无穷数列{an}的前n项和为Sn,且满足Sn=A
a2n
+Ban+C
,其中A、B、C是常数.
(1)若A=0,B=3,C=-2,求数列{an}的通项公式;
(2)若A=1,B=
1
2
C=
1
16
,且an>0,求数列{an}的前n项和Sn
(3)试探究A、B、C满足什么条件时,数列{an}是公比不为-1的等比数列.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等差数列{an},公差d>0,前n项和为Sn,S3=6,且满足a3-a1,2a2,a8成等比数列.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=
1
anan+2
,求数列{bn}的前n项和Tn的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知数列中,,则(  )
A.6B.C.3D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知数列2,5,11,20,x,47, 合情推出x的值为(   )
A.29B.31 C.32D.33

查看答案和解析>>

同步练习册答案