精英家教网 > 高中数学 > 题目详情
8.已知等比数列{an},且a6+a8=4,则a8(a4+2a6+a8)的值为(  )
A.2B.4C.8D.16

分析 将式子“a8(a4+2a6+a8)”展开,由等比数列的性质:若m,n,p,q∈N*,且m+n=p+q,则有aman=apaq可得,a8(a4+2a6+a8)=(a6+a82,将条件代入得到答案.

解答 解:由题意知:a8(a4+2a6+a8)=a8a4+2a8a6+a82
∵a6+a8=4,
∴a8a4+2a8a6+a82=(a6+a82=16.
故选D.

点评 本题考查了在等比数列的性质:若m,n,p,q∈N*,且m+n=p+q,则有aman=apaq,关键是熟练掌握等比数列的性质,需要根据条件正确的转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知sin2α=$\frac{1}{4}$,则${sin^2}(α+\frac{π}{4})$=(  )
A.$\frac{3}{4}$B.$\frac{3}{8}$C.$\frac{5}{8}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在复平面内,复数$z=\frac{2i}{1-i}$对应的点的坐标为(  )
A.(1,-1)B.(1,1)C.(-1,1)D.(-1,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=$\left\{\begin{array}{l}\;{2^x},x≤0\\ \;{log_2}x,x\;>\;0.\end{array}$则$f(\frac{1}{4})$=-2;方程f(-x)=$\frac{1}{2}$的解是-$\sqrt{2}$或1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图所示,在正方体AC1中,AB=2,A1C1∩B1D1=E,直线AC与直线DE所成的角为α,直线DE与平面BCC1B1所成的角为β,则cos(α-β)=(  )
A.$\frac{\sqrt{6}}{6}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{30}}{6}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知实数x,y满足约束条件$\left\{\begin{array}{l}{x+2y-2≥0}\\{x-y+3≥0}\\{3x+2y-6≤0}\end{array}\right.$,若?x、y使得2x-y<m,则实数m的取值范围是m>-$\frac{13}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=ln(x+1)+$\frac{1}{{\sqrt{2-{x^2}}}}$的定义域是(-1,$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.执行如图所示的算法流程图,则输出的结果S的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知a,b,c,d是正实数,且abcd=1,求证:a5+b5+c5+d5≥a+b+c+d.

查看答案和解析>>

同步练习册答案