精英家教网 > 高中数学 > 题目详情

【题目】如图,已知圆,点是圆内一个定点,点是圆上任意一点,线段的垂直平分线和半径相交于点.当点在圆上运动时,点的轨迹为曲线.

1)求曲线的方程;

2)设过点的直线与曲线相交于两点(点两点之间).是否存在直线使得?若存在,求直线的方程;若不存在,请说明理由.

【答案】12)存在,

【解析】

1)结合垂直平分线的性质和椭圆的定义,求出椭圆的方程.

2)设出直线的方程,联立直线的方程和椭圆方程,写出韦达定理,利用,结合向量相等的坐标表示,求得直线的斜率,进而求得直线的方程.方法一和方法二的主要曲边是直线的方程的设法的不同.

1)因为圆的方程为

所以,半径

因为是线段的垂直平分线,所以

所以

因为

所以点的轨迹是以为焦点,长轴长的椭圆.

因为

所以曲线的方程为

2)存在直线使得

方法一:因为点在曲线外,直线与曲线相交,

所以直线的斜率存在,设直线的方程为

由题意知,解得

因为

所以,即

把③代入①得

把④代入②得,得,满足

所以直线的方程为:

方法二:因为当直线的斜率为0时,

此时

因此设直线的方程为:

由题意知,解得

因为,所以

把③代入①得

把④代入②得,满足

所以直线的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知aR,函数f(x)=(-x2ax)ex(xR).

(1)a=2时,求函数f(x)的单调区间;

(2)若函数f(x)(-1,1)上单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题;命题关于的方程有两个相异实数根.

1)若为真命题,求实数的取值范围;

2)若为真命题,为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,三棱柱的侧面是圆柱的轴截面,C是圆柱底面圆周上不与AB重合的一个点。

(1)若圆柱的轴截面是正方形,当点C是弧AB的中点时,求异面直线AB的所成角的大小(结果用反三角函数值表示);

(2)当点C是弧AB的中点时,求四棱锥体积与圆柱体积的比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交大设计学院植物园准备用一块边长为4百米的等边ΔABC田地(如图)建立芳香植物生长区、植物精油提炼处与植物精油体验点.田地内拟建笔直小路MNAP,其中MN分别为ACBC的中点,点PCN上.规划在小路MNAP的交点O(OMN不重合)处设立植物精油体验点,图中阴影部分为植物精油提炼处,空白部分为芳香植物生长区,AN为出入口(小路宽度不计).为节约资金,小路MO段与OP段建便道,供芳香植物培育之用,费用忽略不计,为车辆安全出入,小路AO段的建造费用为每百米4万元,小路ON段的建造费用为每百米3万元.

(1)若拟建的小路AO段长为百米,求小路ON段的建造费用;

(2)设∠BAP=,求的值,使得小路AO段与ON段的建造总费用最小,并求岀最小建造总费用(精确到元).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】南充高中扎实推进阳光体育运动,积极引导学生走向操场,走进大自然,参加体育锻炼,每天上午第三节课后全校大课间活动时长35分钟.现为了了解学生的体育锻炼时间,采用简单随机抽样法抽取了100名学生,对其平均每日参加体育锻炼的时间(单位:分钟)进行调查,按平均每日体育锻炼时间分组统计如下表:

分组

男生人数

2

16

19

18

5

3

女生人数

3

20

10

2

1

1

若将平均每日参加体育锻炼的时间不低于120分钟的学生称为锻炼达人”.

1)将频率视为概率,估计我校7000名学生中锻炼达人有多少?

2)从这100名学生的锻炼达人中按性别分层抽取5人参加某项体育活动.

①求男生和女生各抽取了多少人;

②若从这5人中随机抽取2人作为组长候选人,求抽取的2人中男生和女生各1人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图有一景区的平面图是一半圆形,其中直径长为两点在半圆弧上满足,设,现要在景区内铺设一条观光通道,由 组成.

(1)用表示观光通道的长,并求观光通道的最大值;

(2)现要在景区内绿化,其中在中种植鲜花,在中种植果树,在扇形内种植草坪,已知单位面积内种植鲜花和种植果树的利润均是种植草坪利润的 倍,则当为何值时总利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其导函数设为.

(Ⅰ)求函数的单调区间;

(Ⅱ)若函数有两个极值点,试用表示

(Ⅲ)在(Ⅱ)的条件下,若的极值点恰为的零点,试求这两个函数的所有极值之和的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知(m,n为常数),在处的切线方程为

(Ⅰ)求的解析式并写出定义域;

(Ⅱ)若,使得对上恒有成立,求实数的取值范围;

(Ⅲ)若有两个不同的零点,求证:.

查看答案和解析>>

同步练习册答案