精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx)=2xlnxx2

(1)求曲线yfx)在点(1f1))处的切线方程

(2)若方程fx)=a[+∞)有且仅有两个实根(其中fx)为fx)的导函数,e为自然对数的底),求实数a的取值范围.

【答案】(1) 2xy20;(2) 2e21]

【解析】

1)先求切点的纵坐标,再求导,进而求出在切点处的导数值,即切点处的斜率,代入点斜式方程可得切线方程;

2)函数fx)求导得f'x),然后再求导得f'x)在[+∞)的单调性,求出最小值,进而得与a有两个根时的取值范围.

1)由函数fx)=2xlnxx2可知:f1)=0f'x)=2lnx+1)﹣1

f'1)=2,所以曲线yfx)在点(1f1))处的切线方程:y2x1),

曲线yfx)在点(1f1))处的切线方程:2xy20

2)由(1)得,f'x)=2lnx+1

f'x

x1f'x)<0f'x)单调递减,

x1f'x)>0f'x)单调递增,

f')=﹣2+1+e20,最小值f'1)=20时,fx→+∞

所以f'x)=a有两个根的取值范围:(2e21]

故实数a的取值范围:(2e21]

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4 坐标系与参数方程选讲

在直角坐标系中,直线的参数方程为参数),以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线极坐标方程为.

(1)求直线的普通方程以及曲线的参数方程;

(2)当时,为曲线上动点,求点到直线距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败.

晋级成功

晋级失败

合计

16

50

合计

(1)求图中的值;

(2)根据已知条件完成下面列联表,并判断能否有的把握认为“晋级成功”与性别有关?

(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为,求的分布列与数学期望

(参考公式:,其中

0.40

0.25

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=x2-a+1x+alnx+1

(Ⅰ)若x=3fx)的极值点,求fx)的极大值;

(Ⅱ)求a的范围,使得fx≥1恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地某所高中2019年的高考考生人数是2016年高考考生人数的1.2倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考升学情况,得到如图所示:则下列结论正确的(

A.2016年相比,2019年一本达线人数有所减少

B.2016年相比,2019年二本达线人数增加了1

C.2016年相比,2019年艺体达线人数相同

D.2016年相比,2019年不上线的人数有所增加

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,点,直线的参数方程为为参数),曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,直线与曲线相交于两点.

(1)求曲线与直线交点的极坐标();

(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.下列命题为真命题的是(

A.函数是周期函数B.函数既有最大值又有最小值

C.函数的定义域是,且其图象有对称轴D.对于任意单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系,直线过点,且倾斜角为,以为极点,轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为

1)求直线的参数方程和圆的标准方程;

2)设直线与圆交于两点,若,求直线的倾斜角的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近一段时间来,由于受非洲猪瘟的影响,各地猪肉价格普遍上涨,生猪供不应求。各大养猪场正面临巨大挑战,目前各项针对性政策措施对于生猪整体产能恢复、激发养殖户积极性的作用正在逐步显现.

现有甲、乙两个规模一致的大型养猪场,均养有1万头猪.根据猪的重量,将其分为三个成长阶段如下表.

猪生长的三个阶段

阶段

幼年期

成长期

成年期

重量(Kg

根据以往经验,两个养猪场内猪的体重均近似服从正态分布.

由于我国有关部门加强对大型养猪场即将投放市场的成年期的猪监控力度,高度重视其质量保证,为了养出健康的成年活猪,甲、乙两养猪场引入两种不同的防控及养殖模式.已知甲、乙两个养猪场内一头成年期猪能通过质检合格的概率分别为

(1)试估算各养猪场三个阶段的猪的数量;

(2)已知甲养猪场出售一头成年期的猪,若为健康合格的猪 ,则可盈利元,若为不合格的猪,则亏损元;乙养猪场出售一头成年期的猪,若为健康合格的猪 ,则可盈利元,若为不合格的猪,则亏损元.记为甲、乙养猪场各出售一头成年期猪所得的总利润,求随机变量的分布列,假设两养猪场均能把成年期猪售完,求两养猪场的总利润期望值.

(参考数据:若,则

查看答案和解析>>

同步练习册答案