【题目】近一段时间来,由于受非洲猪瘟的影响,各地猪肉价格普遍上涨,生猪供不应求。各大养猪场正面临巨大挑战,目前各项针对性政策措施对于生猪整体产能恢复、激发养殖户积极性的作用正在逐步显现.
现有甲、乙两个规模一致的大型养猪场,均养有1万头猪.根据猪的重量,将其分为三个成长阶段如下表.
猪生长的三个阶段
阶段 | 幼年期 | 成长期 | 成年期 |
重量(Kg) |
|
|
|
根据以往经验,两个养猪场内猪的体重
均近似服从正态分布![]()
.
由于我国有关部门加强对大型养猪场即将投放市场的成年期的猪监控力度,高度重视其质量保证,为了养出健康的成年活猪,甲、乙两养猪场引入两种不同的防控及养殖模式.已知甲、乙两个养猪场内一头成年期猪能通过质检合格的概率分别为
,
.
(1)试估算各养猪场三个阶段的猪的数量;
(2)已知甲养猪场出售一头成年期的猪,若为健康合格的猪 ,则可盈利
元,若为不合格的猪,则亏损
元;乙养猪场出售一头成年期的猪,若为健康合格的猪 ,则可盈利
元,若为不合格的猪,则亏损
元.记
为甲、乙养猪场各出售一头成年期猪所得的总利润,求随机变量
的分布列,假设两养猪场均能把成年期猪售完,求两养猪场的总利润期望值.
(参考数据:若
,则
,
,
)
【答案】(1)甲、乙两养猪场各有幼年期猪
头,成长期猪
头,成年期猪
头;(2)分布列见解析,135450元.
【解析】
(1)根据正态分布的相关知识进行计算即可;
(2)根据甲、乙两个养猪场内一头成年期猪能通过质检合格的概率分别为
,
,随机变量
可能取值为
,
,
,分别求出
,
,
,写出分布列和期望即可.
(1)由于猪的体重
近似服从正态分布
,设各阶段猪的数量分别为![]()
∴
,
∴
(头);
同理,
,
∴
(头);
,
∴
(头).
所以,甲、乙两养猪场各有幼年期猪
头,成长期猪
头,成年期猪
头。
(2)依题意,甲、乙两个养猪场内一头成年期猪能通过质检合格的概率分别为
,
,随机变量
可能取值为
,
,
.
,
,
,
所以
的分布列为:
| | | |
| | | |
所以
(元),
由于各养猪场均有
头成年猪,一头猪出售的利润总和的期望为
元,则总利润期望为
(元).
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2xlnx﹣x
2.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程
(2)若方程f′(x)=a在[
,+∞)有且仅有两个实根(其中f′(x)为f(x)的导函数,e为自然对数的底),求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P-ABCD中,底面ABCD为矩形,平面PAB⊥平面ABCD,AB=AP=3,AD=PB=2,E为线段AB上一点,且AE︰EB=7︰2,点F、G分别为线段PA、PD的中点.
![]()
(1)求证:PE⊥平面ABCD;
(2)若平面EFG将四棱锥P-ABCD分成左右两部分,求这两部分的体积之比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直角坐标系
中,曲线
的参数方程为
(
为参数),直线
的方程为
.
(1)以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,求曲线
的极坐标方程和直线
的极坐标方程;
(2)在(1)的条件下,直线
的极坐标方程为
,设曲线
与直线
的交于点
和点
,曲线
与直线
的交于点
和点
,求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我们把定义在
上,且满足
(其中常数
,
满足
,
,
)的函数叫做似周期函数.
(1)若某个似周期函数
满足
且图像关于直线
对称,求证:函数
是偶函数;
(2)当
,
时,某个似周期函数在
时的解析式为
,求函数
,
的解析式;
(3)对于确定的
且当
时,
,试研究似周期函数
在区间
上是否可能是单调函数?若可能,求出
的取值范围;若不可能,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=cos(2x
)+2sin(
)sin(
x).
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)求函数y=f(x)的对称轴方程,并求函数f(x)在区间[
,
]上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=3.E为PD的中点,点F在PC上,且
.
(Ⅰ)求证:CD⊥平面PAD;
(Ⅱ)求二面角F–AE–P的余弦值;
(Ⅲ)设点G在PB上,且
.判断直线AG是否在平面AEF内,说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券.例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.
![]()
(1)若某位顾客消费128元,求返券金额不低于30元的概率;
(2)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为
(元).求随机变量
的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com