精英家教网 > 高中数学 > 题目详情
20.在锐角△ABC中,a、b、c是角A、B、C所对的边,且4sinB•sin2($\frac{π}{4}$+$\frac{B}{2}$)+cos2B=1+$\sqrt{3}$
(1)求角B的度数;
(2)若S是该三角形的面积,a=8,S=10$\sqrt{3}$,求b的值.

分析 (1)利用三角恒等变换公式化简已知等式,算出sinB=$\frac{\sqrt{3}}{2}$,结合B是△ABC的内角可B=$\frac{π}{3}$或B=$\frac{2π}{3}$;
(2)根据正弦定理的面积公式,算出边c=5.再利用余弦定理b2=a2+c2-2accosB的式子,代入数据即可算出边b的值.

解答 解:(1)由4sinB•sin2($\frac{π}{4}$+$\frac{B}{2}$)+cos2B=1+$\sqrt{3}$,
得2sinB•[1-cos($\frac{π}{2}$+B)]+1-2sin2B=1+$\sqrt{3}$,可得sinB=$\frac{\sqrt{3}}{2}$,
又∵B是△ABC的内角,∴B=$\frac{π}{3}$或B=$\frac{2π}{3}$;
(2)∵a=8,S=10$\sqrt{3}$,
∴$\frac{1}{2}$acsinB=$\frac{1}{2}$×8×c×$\frac{\sqrt{3}}{2}$=10$\sqrt{3}$,解之得c=5
∵由余弦定理,得b2=a2+c2-2accosB
∴当B=$\frac{π}{3}$时,b=$\sqrt{64+25-2×8×5×\frac{1}{2}}$=7;
当B=$\frac{2π}{3}$时,b=$\sqrt{64+25-2×8×5×cos\frac{2π}{3}}$=$\sqrt{129}$.
即边b的值等于7或$\sqrt{129}$.

点评 本题给出三角形中角B的三角等式,求角B的大小,并在已知面积的情况下求边b.着重考查了三角恒等变换、正余弦定理解三角形和三角形的面积公式等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知非零向量$\overrightarrow{OA}$=(a,0),$\overrightarrow{OB}$=(0,a),$\overrightarrow{OC}$=(1,2),若A,B,C三点共线,则a=(  )
A.-1B.1C.3D.0或3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设{an}是等差数列,{bn}是等比数列,且a1=b1,a2015=b2015,则(  )
A.a1008>b1008B.a1008≥b1008
C.a1008<b1008D.以上答案均有可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.对于函数y=f(x),当x∈(0,+∞)时,总有f(x)<xf′(x),若m>n>0,下列不等式中能恒成立的是(  )
A.$\frac{f(m)}{m}<\frac{f(n)}{n}$B.$\frac{f(m)}{m}>\frac{f(n)}{n}$C.$\frac{f(m)}{n}>\frac{3f(n)}{m}$D.$\frac{f(m)}{n}<\frac{f(n)}{m}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.
(1)第二小组的频率是多少?样本容量是多少?
(2)规定次数在110以上(含110次)为达标,该校高一共有1050名学生,试估计该学校全体高一学生达标的人数有多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°.
(Ⅰ)求(3$\overrightarrow{a}-\overrightarrow{b}$)$•(\overrightarrow{a}+2\overrightarrow{b})$的值;
(Ⅱ)求|$\overrightarrow{a}+\overrightarrow{b}$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.(2-x)10=a0+a1x+a2x2+…+a10x10.则a1+a2+a3+…+a10=(  )
A.1B.-1C.1023D.-1023

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在四边形ABCD中,若$\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{AD}$,且$|{\overrightarrow{AB}}|=|{\overrightarrow{AD}}|$,则(  )
A.ABCD是矩形B.ABCD是菱形
C.ABCD是正方形D.ABCD是平行四边形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx,g(x)=x2-2af(x)(a∈R且a≠0).
(1)若a=1,求函数g(x)在区间[1,2]上的最小值;
(2)若f(x)<g(x)在x∈(1,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案